\(\overline{ababab}\)là số có 6 chữ số. Chứng tỏ số \(\overline{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Bội của 3 chứng tỏ ababab chia hết cho 3

mà số chia hết cho 3 phải có tổng các chữ số chia hết cho 3

Tổng các chữ số là :

 a + b + a + b + a + b 

= 3( a + b )

Vì 3 ( a + b ) chia hết cho 3

=> ababab chia hết cho 3

13 tháng 5 2017

Ta có:ababab=ab0000+ab00+ab=ab.10000+ab.100+ab=ab.(10000+100+10)=ab.10101

Ta có: 10101 chia hết cho 3 và ab số tự nhiên

ab.10101 chia hết cho 3 hayababab chia hết cho 3

Vậy bài toán đã được chứng minh

Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.< ( Cô bé tháng 1 )

26 tháng 2 2017

Bài 1:

Ta có: \(\overline{ababab}=10101.\overline{ab}⋮3\)

\(\Rightarrow\overline{ababab}\in B\left(3\right)\left(đpcm\right)\)

Bài 3:

Đặt \(A=\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(\Rightarrow2A=\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{2^n}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^n}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

29 tháng 1 2017

Bài 1:

\(\overline{ababab}=\overline{ab0000}+\overline{ab00}+\overline{ab}\)

\(=\overline{ab}.10000+\overline{ab}.100+\overline{ab}.1\)

\(=\overline{ab}.\left(10000+100+1\right)\)

\(=\overline{ab}.10101\)

\(10101⋮3\)

Nên \(\overline{ab}.10101⋮3\)

\(\Rightarrow\overline{ababab}\in B\left(3\right)\)

Bài 2:

Gọi số bị chia là a

Số chia là b (b<12 vì số chia lớn hơn số dư)

+) \(a\div b=5\)(dư 12) \(\Rightarrow a=5b+12\)(1)

+) \(a\div\left(b+12\right)=3\)(dư 18) \(\Rightarrow a=3.\left(b+12\right)+18=3b+36+18+=3b+54\)(2)

Từ (1) và (2) \(\Rightarrow5b+12=3b+54\Rightarrow5b-3b=54-12\Rightarrow2b=42\Rightarrow b=21\)

Từ (1) \(\Rightarrow a=5.21+12=117\)

Vậy số bị chia là 117

29 tháng 1 2017

Thank you bạn nhiều nhé!

18 tháng 8 2017

a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001

Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001

\(\overline{abc}\) là số có 3 chữ số

=> \(\overline{abc}\) không phải số chính phương

b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101

Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101

\(\overline{ab}\) là số có hai chữ số

=> \(ababab\) không phải là số chính phương

c,\(\overline{abc}+\overline{bca}+\overline{cab}\)

= 100a+10b+c+100b+10c+a+100c+10a+b

= 111a+111b+111c

= 111.(a+b+c)

=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111

4 tháng 2 2021

a/ \(\overline{ababab}=\overline{10101}.\overline{ab}\) ta có \(\overline{10101}⋮3\Rightarrow\overline{ababab}⋮3\) nên \(\overline{ababab}\) là bội của 3

b/ gọi d là ước chung của tử và mẫu nên

\(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow60n+5-60n-4=1⋮d\Rightarrow d=1\)

Tử và mẫu chỉ có ước chung là 1 nên phân số là tối giản

c/

\(S=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)

4 tháng 2 2021

b) Gọi d= ƯCLN(12n+1;30n+2)

=>12n+1chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d

=> 5(12n+1)-2(30n+2) chia hết cho d

=> (60n+5)-(60n+4) chia hết cho d

=> 60n=5-60n-4 chia hết cho d

=>1 chia hết cho d

=> d = 1

=>(12n+1;30n+2) chia hết cho d

=> 12n+1/30n+2 là phân số tối giản

 c) có S= 165+215

            =(24)5+215

            =220+215

            =215+220-15+215

            =215.220-15+215

              =215.(220-15+1)

            =215.(25+1)

            =215.(32+1)

           =215.33

mà 33 chia hết cho 33

=>215.33 chia hết cho 33

=>165+215 chia hết cho 33

=> S chia hết cho 33 (ĐPCM)

24 tháng 1 2022

Tham khảo:D

ababab = ab0000 + ab00 + ab

= ab . 10000 + ab . 100 + ab . 1

= ab . (10000 + 100 + 1)

= ab . 10101

Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3 

Suy ra: ababab là bội của 3 

Giải thích các bước giải:

 Vì theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a + b + a + b + a + b

 mà a + b + a + b + a + b = a . 3 + b . 3 

Vậy từ đó suy ra ababab chia hết cho 3.

24 tháng 1 2022

Tham khảo vui lòng in đậm nhé!

a)Ta có :
ababab = ab . 10101

Do 10101 chia hết cho 3 

=> ab . 10101 chia hết cho 3

hay ababab chia hết cho 3

ababab chia hết cho 3 nên ababab thuộc B ( 3 )

c ) Ta có :

165 + 215

( 24 )5 + 215 

= 220 +  215 

= 215 . 25 + 215 

= 215 . ( 25 + 1 ) 

= 215 . 33 chia hết cho 33

Vậy 165 + 215 chia hết cho 33

10 tháng 4 2019

a,\(ababab=ab0000+ab00+ab\)

\(=ab.10000+ab.100+ab.1\)

\(=ab.10101\)

Tiếp tục làm thêm

31 tháng 10 2017

ababab = 10101 x ab \(⋮\)ab

31 tháng 10 2017

Ta có: ababab = ab . 10101 \(⋮\)ab 

 => ababab  \(⋮\)ab

4 tháng 1 2017

có bn ạ

mk nghĩ zậy

4 tháng 1 2017

có bạn ạ

mkk o chắc nữa

8 tháng 3 2020

HkI, số h/sgiỏi bằng \(\frac{3}{7}\) số HS còn lại

=>số h/s giỏi =\(\frac{3}{3}+7=\frac{3}{10}\) ﴾số h/s cả lớp﴿

Hk2số HS giỏi bằng 2/3 số HS còn lại

=>số h/s giỏi bằng:\(\frac{2}{3}+2=\frac{2}{5}\)﴾số h/s cả lớp﴿

P/s chỉ 4 h/s giỏi là:

\(\frac{2}{5}-\frac{3}{10}=\frac{1}{10}\)﴾số h/s cả lớp﴿

Số h/s cả lớp là:

\(4:\frac{4}{10}=40\)﴾h/s)

Vậy lớp 6A có 40 học sinh.

P/s: bài này có nhiều cách giải cậu cũng có thể tham khảo trên mạng

 Ta có: ababab = ab0000 + ab00 + ab

= ab. 10000 + ab . 100 + ab . 1

= ab . (10000 + 100 + 1)

= ab . 10101=>10101 chia hết cho 3 => ab . 10101 chia hết cho 3 

=> ababab là B(3)

8 tháng 3 2020

xin lỗi nhưng có thể ghi a,b để nhận diện bài dễ hơn mik quên k ghi