Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì OT là tia phân giác của xoy nên xot =yot , i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy. Nên ih=ik.
câu 3 mk chịu bn hỏi thầy cô nha! Nhớ k cho mk nha!
a) vì OT là tia phân giác của xoy nên xot =yot ,
i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy.
Nên ih=ik.
mk chỉ biết câu a thôi nha!
tự vẽ hình
xét tam giác vuông HIO và tam giác vuông IOK, ta có:
HOI = IOK ( OT là tia phân giác của Ô)
OI : cạnh chung
=> tam giác vuông IOH = IOK ( cạnh huyền góc nhọn)
=> IH = IK( hai cạnh tương ứng)
còn phần b mk chịu nha, sorry bạn nhiều lắm! T_T
bạn tham khảo ở đây nhé
Cho góc nhọn xOy. Điểm H nằm trên đường phân giác góc xOy. Từ H dựng các đường vuông góc với 2 cạnh Ox, Oy. Chứng minh tam giác HAB cân - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
1 2 A B x t y C O
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 102 - 82 = 100 - 64 = 36
=> AB = 6
a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :
OA = OB (GT)
<O chung
=> Tam giác vuông OBK = Tam giác vuông OAH ( cạnh góc vuông - góc nhọn kề )
=> OH = OK (2CTU)
Xét Tam giác OHK có :
OH = OK
=> Tam giác OHK cân tại O (dpcm)
b) Vì Tam giác OBK và Tam giác OAH (cmt)
=> <OKB = <OHA (2GTU)
TC : OH = OK (cmt)
OA = OB (GT)
mà OH = OB + BH
OK = OA + AK
=> AK = BH
Xét Tam giác vuông AIK và Tam giác vuông BIH
AK = BH
<OKB = <OHA
=> Tam giác vuông AIK = Tam giác vuông BIH ( cạnh góc vuông - góc nhọn kề)
=> AI = BI (2CTU)
Xét Tam giác OAI = Tam giác OBI có :
OA = OB (GT)
OI chung
AI = BI (cmt)
=> Tam giác OAI = Tam giác OBI (c.c.c)
=> <AOI = <BOI (2GTU)
=> OI là tia phân giác của <xOy (dpcm)
a) Xét \(\Delta OKB\)và \(\Delta OHA\)có :
\(\widehat{OKB}=\widehat{OHA}\left(=90^o\right)\)
\(OB=OA\left(gt\right)\)
\(\widehat{O}\)chung
\(\Rightarrow\Delta OKB=\Delta OHA\left(ch-gn\right)\)
\(\Rightarrow OK=OH\)( 2 góc tương ứng )
\(\Rightarrow\Delta OHK\)cân
b) Ta có : \(\Delta OKB=\Delta OHA\left(cmt\right)\)
\(\Rightarrow\widehat{OBK}=\widehat{OAH}\)( 2 góc tương ứng )
Ta có : \(OA=OK+KA\)
\(OB=OH+HB\)
mà \(OA=OB\left(gt\right);OH=OK\left(cmt\right)\)
\(\Rightarrow KA=HB\)
Xét \(\Delta AKI\)và \(\Delta BHI\)có :
\(\widehat{KAI}=\widehat{HBI}\left(cmt\right)\)
\(AK=BH\left(cmt\right)\)
\(\widehat{AKI}=\widehat{BHI}\left(=90^o\right)\)
\(\Rightarrow\Delta AKI=\Delta BHI\left(g.c.g\right)\)
\(\Rightarrow KI=HI\)( 2 cạnh tương ứng )
Xét \(\Delta OKI\)và \(\Delta OHI\)có :
\(OK=OH\left(cmt\right)\)
\(\widehat{OKI}=\widehat{OHI}\left(=90^o\right)\)
\(KI=HI\left(cmt\right)\)
\(\Rightarrow\Delta OKI=\Delta OHI\left(c.g.c\right)\)
\(\Rightarrow\widehat{KOI}=\widehat{HOI}\)( 2 góc tương ứng )
\(\Rightarrow\)OI là tia phân giác của \(\widehat{xOy}\)