Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề : Cho đoạn thẳng AB cùng điểm C thuộc đoạn thẳng đó (C khác A và B). Về cùng một nửa mặt phẳng bờ AB, kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm M cố định. Kẻ tia Cz vuông góc với tia CM tại C, tia Cz cắt tia By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
:v Làm bài 31 thôi nhá , còn lại all tự làm -..-
Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).
Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)
+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)
Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)
Diện tích tăng thêm 36 cm2 nên ta có p/trình :
\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)
\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)
\(\Leftrightarrow xy+3x+3y+9=xy+72\)
\(\Leftrightarrow3x+3y=63\)
\(\Leftrightarrow x+y=21\)
+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).
Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)
Diện tích giảm đi 26cm2 nên ta có phương trình :
\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)
\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)
\(\Leftrightarrow xy-4x-2y+8=xy-52\)
\(\Leftrightarrow4x+2y=60\)
\(\Leftrightarrow2x+y=30\)
Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)
Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :
\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)
Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm
Xét (O) có
^ABC = 900 ( góc nr chắn nửa đường tròn )
=> ^ABD' = 900
=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn
=> A;O';D thẳng hàng
a.
OB song song O'C \(\Rightarrow\widehat{BOA}+\widehat{CO'A}=180^0\) (hai góc trong cùng phía)
Do \(OA=OB=R\) và \(O'A=O'C=R'\) nên các tam giác OAB và O'AC cân tại O và O'
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\widehat{OBA}\\\widehat{O'AC}=\widehat{O'CA}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\dfrac{180^0-\widehat{BOA}}{2}\\\widehat{O'AC}=\dfrac{180^0-\widehat{CO'A}}{2}\end{matrix}\right.\)
\(\Rightarrow\widehat{BAC}=180^0-\left(\widehat{OAB}+\widehat{O'AC}\right)=180^0-\left(\dfrac{180^0-\widehat{BOA}}{2}+\dfrac{180^0-\widehat{CO'A}}{2}\right)\)
\(=180^0-\left(180^0-\dfrac{\widehat{BOA}+\widehat{CO'A}}{2}\right)=90^0\)
\(\Rightarrow\Delta ABC\) vuông tại A
b.
TH1:
Nếu \(R=R'\) thì OBCO' là hình bình hành (cặp cạnh đối OB, O'C song song và bằng nhau)
\(\Rightarrow BC||O'O\Rightarrow AH\perp O'O\)
Từ B kẻ \(BK\perp O'O\Rightarrow AHBK\) là hình chữ nhật (tức giác có 3 góc vuông)
\(\Rightarrow AH=BK\le OB=R=R'\)
Dấu "=" xảy ra khi K trùng O hay BC vuông góc OB \(\Rightarrow BC\) là tiếp tuyến của (O)
TH2:
Nếu \(R\ne R'\), không mất tính tổng quát giả sử \(R>R'\)
Kéo dài BC và O'O cắt nhau tại D
Từ O kẻ \(OK\perp BC\)
Áp dụng định lý Talet: \(\dfrac{DO'}{DO}=\dfrac{OC'}{OB}=\dfrac{R'}{R}\)
OK và AH cùng vuông góc BC \(\Rightarrow OK||AH\)
Áp dụng định lý Thales:
\(\dfrac{AH}{OK}=\dfrac{DO'}{DO}=\dfrac{R'}{R}\Rightarrow AH=\dfrac{R'}{R}.OK\)
\(\Rightarrow AH_{max}\) khi \(OK_{max}\)
Mà \(OK\perp BC\Rightarrow OK\le OB\) (đường vuông góc ko lớn hơn đường xiên)
\(\Rightarrow OK_{max}=OB=R\)
\(\Rightarrow AH_{max}=\dfrac{R'}{R}.R=R'\)
Dấu "=" xảy ra khi K trùng B hay BC là tiếp tuyến của (O)