K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

a, HS tự làm

b, Chú ý  O K M ^ = 90 0  và kết hợp ý a) => A,M,B,O,K ∈ đường tròn đường kính OM

c, Sử dụng hệ thức lượng trong tam giác vuông OAM ( hoặc có thể chứng minh tam giác đồng dạng)

d, Chứng minh OAHB là hình bình hành và chú ý A,B thuộc (O;R) suy ra OAHB là hình thoi

e, Chứng minh OH ⊥ AB, OMAB => O,H,M thẳng hàng

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC vuông góc với MB, BD vuông góc với MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.              1.Chứng minh tứ giác AMBO nội tiếp.             ...
Đọc tiếp

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC vuông góc với MB, BD vuông góc với MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.

              1.Chứng minh tứ giác AMBO nội tiếp.

              2.Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn .

              3.Chứng minh  OI.OM = R2    ;  OI. IM = IA2.

              4.Chứng minh OAHB là hình thoi.

              5.Chứng minh ba điểm O, H, M thẳng hàng.

              6.Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d

0
14 tháng 12 2021

1 vì K là trung điểm NP nên OK vuông góc NP ( Quan hệ đường kính và dây cung ) suy ra góc OKM=90 độ .Theo tính chất tiếp tuyến ta có góc OAM=90 độ , góc OBM = 90 độ như vậy K,A,B cùng nhìn OM dưới một góc 90 độ nên cùng nằm trên dường tròn đường kính OM . vậy ..........

a: ΔONP cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)NP tại K

Ta có: \(\widehat{OAM}=\widehat{OBM}=\widehat{OKM}=90^0\)

=>O,A,M,B,K cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot OM=OA^2=R^2\)

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot IM=IA^2\)

c: AC\(\perp\)BM

OB\(\perp\)BM

Do đó: OB//AC

=>OB//AH

BD\(\perp\)MA

OA\(\perp\)MA

Do đó: BD//OA

=>BH//OA

Xét tứ giác OBHA có

OB//HA

OA//HB

Do đó: OBHA là hình bình hành

Hình bình hành OBHA có OB=OA

nên OBHA là hình thoi

d: OBHA là hình thoi

=>OH là đường trung trực của BA

mà M nằm trên đường trung trực của BA(cmt)

nên O,H,M thẳng hàng

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

5 tháng 11 2019

1) ta có :\(\left\{{}\begin{matrix}MA\perp OA\\MB\perp OB\end{matrix}\right.=>}\widehat{MAO}=90;\widehat{MBO}=90\)

=> tứ giác AMBO nội tiếp Cho đường tròn (O;R),từ một điểm A trên (O) kẻ tiếp tuyến d với (O),Trên đường thẳng d lấy điểm M bất kì,Kẻ cát tuyến MNP và gọi K là trung điểm của NP,Chứng minh 4 điểm A M B O cùng thuộc một đường tròn,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9Cho đường tròn (O;R),từ một điểm A trên (O) kẻ tiếp tuyến d với (O),Trên đường thẳng d lấy điểm M bất kì,Kẻ cát tuyến MNP và gọi K là trung điểm của NP,Chứng minh 4 điểm A M B O cùng thuộc một đường tròn,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

5 tháng 11 2019

a) ta có

MA ; MB là các tiếp tuyến của (O)

⇒gócMAO=90 ; MBO = 90

⇒tú giác AMBO nội tiếp

20 tháng 12 2023

loading... loading... 

28 tháng 4 2020

N A B H M C O K I

1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp

suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn

2) vì OI \(\perp\)AC nên OI là đường trung trực của AC

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

Xét \(\Delta AOM\)và \(\Delta COM\)có :

\(\widehat{AOM}=\widehat{COM}\)( cmt )  

OM ( chung )

OA = OC

\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)

\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O

3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)

Xét \(\Delta AOM\)và \(\Delta HCB\)có :

\(\widehat{AOM}=\widehat{HBC}\)\(\widehat{MAO}=\widehat{CHB}=90^o\)

\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)

4) Gọi N là giao điểm của BC và AM

Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN

CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)

Mà AM = NM nên CK = KH 

\(\Rightarrow\)K là trung điểm của CH