K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

a: OM cắt (O) tại H

=>OH=R=12cm

Ta có: OM=2R

=>\(OM=2\cdot12=24\left(cm\right)\)

Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=24^2-12^2=576-144=432\)

=>\(AM=\sqrt{432}=12\sqrt{3}\left(cm\right)\)

b: Xét ΔAOM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB và MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔAMB đều

31 tháng 12 2023

loading... a) 

Ta có:

OH = R = 12 (cm)

OM = 2R (gt)

⇒ OM = 2.12 = 24 (cm)

∆OAM vuông tại A

⇒ OM² = OA² + AM² (Pytago)

⇒ AM² = OM² - OA²

= 24² - 12²

= 432

⇒ AM = 12√3 (cm)

b) ∆OAM vuông tại A

⇒ sin AMO = OA/OM = 1/2

⇒ ∠AMO = 30⁰

Do MA và MB là hai tiếp tuyến cắt nhau tại M

⇒ MO là tia phân giác của ∠AMB

⇒ ∠BMO = ∠AMO = 30⁰

⇒ ∠AMB = ∠AMO + ∠BMO

= 30⁰ + 30⁰

= 60⁰

Do MA và MB là hai tiếp tuyến cắt nhau tại M

⇒ MA = MB

⇒ ∆ABM cân tại M

Mà ∠AMB = 60⁰ (cmt)

⇒ ∆ABM là tam giác đều

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1 2024

Thank youuu :3

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

=>HB=HC

b: Xét ΔMBC có

MH vừa là đường cao, vừa là đường trung tuyến

=>ΔMBC cân tại M

Xét ΔOBM  và ΔOCM có

OB=OC

góc BOM=góc COM

OM chung

Do đó: ΔOBM=ΔOCM

=>góc OCM=góc OBM=90 độ

=>OC vuông góc CM

c: ΔOMB vuông tại B

=>OB^2+BM^2=OM^2

=>BM=R*căn 3

\(S_{OBM}=\dfrac{1}{2}\cdot OB\cdot BM=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)

\(S_{OCM}=\dfrac{1}{2}\cdot OC\cdot CM=\dfrac{R^2\sqrt{3}}{2}\)

=>\(S_{OBMC}=2\cdot\dfrac{R^2\sqrt{3}}{2}=R^2\sqrt{3}\)

a: Xét ΔOAM vuông tại A có 

\(OM^2=OA^2+AM^2\)

hay \(AM=5\sqrt{3}\left(cm\right)\)

23 tháng 12 2019

a)

Gọi C’ là trung điểm của OM.

Suy ra BC’ là đường trung tuyến

Suy ra tam giác OBC là tam giác đều : OB=OC’=BC’=R

Suy ra góc BOC’ =60 độ

Mà goc BAM = góc BOC’ = sđcung BA chia 2 = sđ cung BC’ ( do cung BC’=cung C’A);

 Suy ra góc BAM=60 độ

Mà tam giác BAM là tam giác cân có MA=MB(tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác BAM là tam giác đều.

Do BAM là tam giác đều suy ra AB=MA=MB

Áp dụng định lí py-ta-go trong tam giác vuông ta có:

         

b)

ta thấy điểm C trùng với C’

mà ta có OB=OA=AC’=BC’=R

suy ra tứ giác OBC’A là hình thoi

suy ra tứ giác OBCA là hình thoi