Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha
1, Ta có: MA = MC (t/c 2 tt cắt nhau)
OA = OC (t/c 2 tt cắt nhau)
=> OM là đường trung trực của AC
=> OM _|_ AC hay \(\widehat{OEC}=90^o\)
Có: \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)
XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)
Mà 2 góc này ở vị trí đối diện
=> tứ giác OBDE nội tiếp (đpcm)
2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn
=> \(\widehat{ACB}=90^o\) hay BC _|_ AD
Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)
3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF
Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt) (1)
=> AM // BF => tứ giác AMBF là hình thang
Xét hình thang AMBF có: KM = KF ; OA = OB (gt)
=> OK là đường trung bình của hình thang AMBF
=> OK // AM // BF mà AM _|_ AB (cmt)
=> OK _|_ AB (1)
Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)
Từ (1) và (2) => đpcm
a) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A
b) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow\widehat{FAB}=\widehat{FAC}\Rightarrow\)AF là đường phân giác của △ABC
Lại có △ABC cân tại A
Suy ra AF là đường cao của △ABC\(\Rightarrow\)\(\widehat{BFA}=90^0\) hay BF⊥AO
Ta có △ABO vuông tại B đường cao BF\(\Rightarrow BF^2=AF.FO\Rightarrow\dfrac{AF}{BF}=\dfrac{BF}{FO}\Rightarrow\dfrac{AF^2}{BF^2}=\dfrac{AF}{AO}\left(1\right)\)
Ta có \(\widehat{ABF}=90^0-\widehat{FBO}=\widehat{FOB}\)
Lại có \(\widehat{OFB}=\widehat{AFB}=90^0\)
Suy ra △BAF\(\sim\)△OBF (g-g)\(\Rightarrow\dfrac{AB}{OB}=\dfrac{AF}{BF}\Rightarrow\left(\dfrac{AB}{OB}\right)^2=\left(\dfrac{AF}{BF}\right)^2\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF^2}{BF^2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF}{FO}\)
Ta có \(\widehat{COD}=90^0-\widehat{OAC}=90^0-\widehat{OAB}=90^0-\widehat{DAH}=\widehat{ADH}=\widehat{CDO}\)(đối đỉnh) hay \(\widehat{COD}=\widehat{CDO}\Rightarrow\)△COD cân tại C⇒CO=CD
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a) Do \(OA=OB\) (2 bán kính)
=> Tam giác OAB cân tại O
Mà OH là đường trung tuyến
=> OH cũng là đường cao ứng với AB
=> OH vuông góc AB.
(VẬY TA CÓ ĐPCM).
b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn
=> góc CDA = 90 độ
=> CD vuông góc AD
Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)
=> Áp dụng HTL thì: \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)
VẬY TA CÓ ĐPCM.
c) Có: \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)
=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\) (HTL: \(AC^2=CD.CK\))
=> \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)
Áp dụng tiếp tục HTL ta được:
=> \(AD.CK=AC.AK\)
=> \(VP=\frac{AC.AK}{AC}=AK\)
VẬY TA CÓ ĐPCM.
Câu d nhaaaaaaaaa !!!!!
Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OK vuông góc với AB.
Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OE vuông góc với CD.
* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:
=> \(OH.OK=OA^2\)
* Áp dụng HTL vào tam giác OCE vuông tại C có CI vuông góc với OE:
=> \(OI.OE=OC^2\)
Mà: \(OA=OE\) {2 BÁN KÍNH CỦA (O)}
=> \(OH.OK=OI.OE\)
(VẬY TA CÓ ĐPCM).
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
DO đó: ΔCBA vuông tại C
\(BC=\sqrt{\left(2\cdot R\right)^2-R^2}=R\sqrt{3}\)
Xét ΔABC vuông tại C có sin CBA=CA/AB=1/2
nên góc CBA=30 độ
=>góc CAB=60 độ
b: \(CI=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
=>\(CD=R\sqrt{3}\)
c: Xét ΔEAB vuông tại A có AC là đường cao
nên \(\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)
=>\(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{4\cdot R^2}\)