\(\)góc ACB, gó...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔACB nội tiếp
AB là đường kính

DO đó: ΔCBA vuông tại C

\(BC=\sqrt{\left(2\cdot R\right)^2-R^2}=R\sqrt{3}\)

Xét ΔABC vuông tại C có sin CBA=CA/AB=1/2

nên góc CBA=30 độ

=>góc CAB=60 độ

b: \(CI=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

=>\(CD=R\sqrt{3}\)

c: Xét ΔEAB vuông tại A có AC là đường cao

nên \(\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)

=>\(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{4\cdot R^2}\)

15 tháng 2 2020

Hình tự vẽ nha

1, Ta có: MA = MC (t/c 2 tt cắt nhau)

              OA = OC (t/c 2 tt cắt nhau)

=> OM là đường trung trực của AC

=> OM _|_ AC hay \(\widehat{OEC}=90^o\)

Có:  \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)

XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)

Mà 2 góc này ở vị trí đối diện

=> tứ giác OBDE nội tiếp (đpcm)

2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn

=> \(\widehat{ACB}=90^o\) hay BC _|_ AD

Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)

3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF

Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt)                  (1)

=> AM // BF => tứ giác AMBF là hình thang

Xét hình thang AMBF có:  KM = KF ; OA = OB (gt)

=> OK là đường trung bình của hình thang AMBF

=> OK // AM // BF mà AM _|_ AB (cmt)

=> OK _|_ AB (1)

Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)

Từ (1) và (2) => đpcm

2 tháng 1 2019

a) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A

b) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow\widehat{FAB}=\widehat{FAC}\Rightarrow\)AF là đường phân giác của △ABC

Lại có △ABC cân tại A

Suy ra AF là đường cao của △ABC\(\Rightarrow\)\(\widehat{BFA}=90^0\) hay BF⊥AO

Ta có △ABO vuông tại B đường cao BF\(\Rightarrow BF^2=AF.FO\Rightarrow\dfrac{AF}{BF}=\dfrac{BF}{FO}\Rightarrow\dfrac{AF^2}{BF^2}=\dfrac{AF}{AO}\left(1\right)\)

Ta có \(\widehat{ABF}=90^0-\widehat{FBO}=\widehat{FOB}\)

Lại có \(\widehat{OFB}=\widehat{AFB}=90^0\)

Suy ra △BAF\(\sim\)△OBF (g-g)\(\Rightarrow\dfrac{AB}{OB}=\dfrac{AF}{BF}\Rightarrow\left(\dfrac{AB}{OB}\right)^2=\left(\dfrac{AF}{BF}\right)^2\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF^2}{BF^2}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF}{FO}\)

Ta có \(\widehat{COD}=90^0-\widehat{OAC}=90^0-\widehat{OAB}=90^0-\widehat{DAH}=\widehat{ADH}=\widehat{CDO}\)(đối đỉnh) hay \(\widehat{COD}=\widehat{CDO}\Rightarrow\)△COD cân tại C⇒CO=CD

2 tháng 1 2019

vẽ hình giúp mik vs

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

14 tháng 8 2020

a) Do \(OA=OB\)      (2 bán kính)

=> Tam giác OAB cân tại O

Mà OH là đường trung tuyến

=> OH cũng là đường cao ứng với AB

=> OH vuông góc AB.

(VẬY TA CÓ ĐPCM).

b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn

=> góc CDA = 90 độ

=> CD vuông góc AD

Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)

=> Áp dụng HTL thì:    \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)

VẬY TA CÓ ĐPCM.

c) Có:    \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)

=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\)      (HTL: \(AC^2=CD.CK\))

=>   \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)

Áp dụng tiếp tục HTL ta được: 

=>    \(AD.CK=AC.AK\)

=>   \(VP=\frac{AC.AK}{AC}=AK\)

VẬY TA CÓ ĐPCM.

14 tháng 8 2020

Câu d nhaaaaaaaaa !!!!!

Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OK vuông góc với AB.

Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OE vuông góc với CD. 

* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:

=>   \(OH.OK=OA^2\)

* Áp dụng HTL vào tam giác OCE vuông tại C  có CI vuông góc với OE: 

=>   \(OI.OE=OC^2\)

Mà:    \(OA=OE\)     {2 BÁN KÍNH CỦA (O)}

=>    \(OH.OK=OI.OE\)

(VẬY TA CÓ ĐPCM).