K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

a, HS tự làm

b, HS tự làm

c, IK = 1 2 CK =  1 2 AC.sinα = R.cosα.sinα

d, Giả sử BI cắt AM tại N. Vì IK//AM => MO = OP

=>  1 O I 2 = 1 O M 2 + 1 O N 2

=  1 O P 2 + 1 O N 2 = 1 O B 2 => M ≡ N

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là phân giác của góc AOC

Ta có: AC\(\perp\)CB

AC\(\perp\)OH

Do đó: OH//CB

b: Xét ΔOAM và ΔOCM có

OA=OC

\(\widehat{AOM}=\widehat{COM}\)

OM chung

Do đó: ΔOAM=ΔOCM

=>\(\widehat{OAM}=\widehat{OCM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>MA là tiếp tuyến của (O)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CA⊥CB

mà CA⊥OH

nên OH//BC

b: Xét (O) có

OH là một phần đường kính

AC là dây

OH⊥AC tại H

Do đó: H là trung điểm của AC

Xét ΔMAC có 

MH là đường trung tuyến

MH là đường cao

Do đó: ΔMAC cân tại M

Xét ΔOAM và ΔOCM có

OA=OC

MA=MC

OM chung

Do đó:ΔOAM=ΔOCM

Suy ra: \(\widehat{OAM}=\widehat{OCM}=90^0\)

hay MA là tiếp tuyến của (O)