Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc CND=1/2*180=90 độ
Vì góc CNE+góc CKE=180 độ
nên CNEK nội tiếp
2: Xét ΔMNE và ΔMBC có
góc MNE=góc MBC
góc M chung
=>ΔMNE đồng dạng với ΔMBC
=>MN/MB=ME/MC
=>MN*MC=MB*ME
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.
C A B D H E K O
Gợi ý cho câu c: \(COHE\) nội tiếp đó. Thử CM tại sao đi.
a) Xét (O) có
\(\widehat{DMC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{DMC}=90^0\)(Hệ quả góc nội tiếp)
\(\Leftrightarrow\widehat{EMC}=90^0\)
Xét tứ giác EMCH có
\(\widehat{EMC}\) và \(\widehat{EHC}\) là hai góc đối
\(\widehat{EMC}+\widehat{EHC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: EMCH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)