Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiếp tuyến MN, tiếp điểm K. Vì AB//MN
Nên OH ⊥ AB. Tính được OH = 3 5 R. Từ đó tính được KN = 4 3 R => S O M N = 4 3 R 2
O A E H B F C
Gọi C là tiếp điểm của EF với đường tròn (O), H là giao điểm của OC và AB. Ta có OC vuông EF và AB // EF nên OC vuông AB.
Ta tính được HB = 12 cm nên OH = 9 cm
\(\Delta OAB~\Delta OEF\)nên \(\frac{OH}{OC}=\frac{AB}{EF}\)
\(\Leftrightarrow\frac{9}{15}=\frac{24}{EF}\)
Ta tính được EF = 40cm.
Gọi C là tiếp điểm của EF với đường tròn (O), H là giao điểm của OC và AB. Ta có OC ⊥ EF và AB // EF nên OC ⊥ AB.
Ta tính được HB = 12 cm nên OH = 9 cm.
Ta tính được EF = 40cm.
a) Ta có \(\widehat{AND}=\widehat{AMD}\)(góc nội tiếp cùng chắn cung AD)
\(AM//BN\Rightarrow\widehat{AMN}=\widehat{MNB}\left(slt\right)\)
Ta có góc ANB nội tiếp đường trong O chắn nửa đường trong => góc ANB=900
Ta có: \(\widehat{AMD}+\widehat{AMN}+\widehat{DNM}=\widehat{DNM}+\widehat{AND}+\widehat{MNB}\)
\(\Leftrightarrow\widehat{DMN}+\widehat{MND}=90^0\Leftrightarrow\widehat{NDM}=90^0\)
Vì DM//AB và ND vuông góc với DM => DN vuông góc với AB
b) Ta có \(\widehat{BAN}=\widehat{BMN}\)(cùng chắn cung BN)
Mà \(\widehat{AMN}+\widehat{NMB}=90^0\Rightarrow\widehat{BAN}+\widehat{BAM}=90^0\Rightarrow\widehat{MAN}=90^0\)
\(\Rightarrow MANB\)là hcn
=> AM=BN
Ta có MC//AE và AM//EC => AMCE là hbh => AM=EC mà AM=BN => BN=EC mà BN//EC => ENBC là hbh =>EN//CB => CB vuông góc với AB(vì AB vuông góc với EN)=> BC là tiếp tuyến của đường tròn O
Chúc bạn học tốt!!!