K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Lười quá, chắc mình giải câu c thôi ha.

Vẽ \(OH\) vuông góc \(d\) tại \(H\)\(AB\) cắt \(OH\) tại \(L\)\(OM\) cắt \(AB\) tại \(T\)

H M A B O d L T .

CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.

19 tháng 4 2017

Mơn Trần Quốc Đạt nha

19 tháng 4 2022

giúp mình với ạ

31 tháng 8 2019

M A B D O H C K I A B C D S O M

a) Áp dụng tính chất 2 tiếp tuyến giao nhau thì MA = MB. Do đó OM là trung trực đoạn AB.

Vì OM giao AB tại H nên H là trung điểm của AB (đpcm).

b) Ta thấy ^ABD chắn nửa đường tròn (O) nên BD vuông góc với AB, có AB vuông góc OM

=> BD // OM => ^HMC = ^BDC (So le trong) = ^HAC => 4 điểm A,H,C,M cùng thuộc 1 đường tròn

Hay tứ giác AHCM nội tiếp (đpcm).

c) Áp dụng hệ thức lượng ta có MC.MD = MH.MO (= MB2) => Tứ giác DOHC nội tiếp

Vì ^ODC = ^OCD nên ^HO là phân giác ngoài của ^CHD. Lai có HO vuông góc HB

Suy ra HB là phân giác ^CHD => ^CHD = 2.^BHC = 2.AMC (Do tứ giác AHCM nội tiếp) (đpcm).

d) Bổ đề: Xét hình thang ABCD (AB // CD) có AC cắt BD tại O, M là trung điểm CD. Khi đó AD,BC,MO đồng quy.

Thật vậy: Gọi AD cắt BC tại S. Ta có \(\frac{OA}{OC}=\frac{AB}{CD}=\frac{SA}{SD}\). Từ đó: \(\frac{OA}{OC}.\frac{MC}{MD}.\frac{SD}{SA}=1\)

Theo ĐL Melelaus cho \(\Delta\)ACD thì 3 điểm M,O,S thẳng hàng. Tức là BC,AD,MO cắt nhau tại S.

Giải bài toán: Có ^HCB = ^HCK + ^BCD = ^HAM + ^BAD = ^MAO = 900 => HC vuông góc BI

Áp dụng hệ thức lượng trong tam giác vuông: IH2 = IB.IC

Mặt khác dễ thấy ^IMC= ^BDC = ^IBM => \(\Delta\)CIM ~ \(\Delta\)MIB (g.g) => IM2 = IB.IC

Suy ra IH = IM. Lúc đó, xét hình thang BDHM (HM // BD), MD cắt BH tại K, I là trung điểm HM

Ta thu được MB,HD,IK đồng quy (Theo bổ đề) (đpcm).