Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười quá, chắc mình giải câu c thôi ha.
Vẽ \(OH\) vuông góc \(d\) tại \(H\). \(AB\) cắt \(OH\) tại \(L\). \(OM\) cắt \(AB\) tại \(T\)
H M A B O d L T .
CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.
M A B D O H C K I A B C D S O M
a) Áp dụng tính chất 2 tiếp tuyến giao nhau thì MA = MB. Do đó OM là trung trực đoạn AB.
Vì OM giao AB tại H nên H là trung điểm của AB (đpcm).
b) Ta thấy ^ABD chắn nửa đường tròn (O) nên BD vuông góc với AB, có AB vuông góc OM
=> BD // OM => ^HMC = ^BDC (So le trong) = ^HAC => 4 điểm A,H,C,M cùng thuộc 1 đường tròn
Hay tứ giác AHCM nội tiếp (đpcm).
c) Áp dụng hệ thức lượng ta có MC.MD = MH.MO (= MB2) => Tứ giác DOHC nội tiếp
Vì ^ODC = ^OCD nên ^HO là phân giác ngoài của ^CHD. Lai có HO vuông góc HB
Suy ra HB là phân giác ^CHD => ^CHD = 2.^BHC = 2.AMC (Do tứ giác AHCM nội tiếp) (đpcm).
d) Bổ đề: Xét hình thang ABCD (AB // CD) có AC cắt BD tại O, M là trung điểm CD. Khi đó AD,BC,MO đồng quy.
Thật vậy: Gọi AD cắt BC tại S. Ta có \(\frac{OA}{OC}=\frac{AB}{CD}=\frac{SA}{SD}\). Từ đó: \(\frac{OA}{OC}.\frac{MC}{MD}.\frac{SD}{SA}=1\)
Theo ĐL Melelaus cho \(\Delta\)ACD thì 3 điểm M,O,S thẳng hàng. Tức là BC,AD,MO cắt nhau tại S.
Giải bài toán: Có ^HCB = ^HCK + ^BCD = ^HAM + ^BAD = ^MAO = 900 => HC vuông góc BI
Áp dụng hệ thức lượng trong tam giác vuông: IH2 = IB.IC
Mặt khác dễ thấy ^IMC= ^BDC = ^IBM => \(\Delta\)CIM ~ \(\Delta\)MIB (g.g) => IM2 = IB.IC
Suy ra IH = IM. Lúc đó, xét hình thang BDHM (HM // BD), MD cắt BH tại K, I là trung điểm HM
Ta thu được MB,HD,IK đồng quy (Theo bổ đề) (đpcm).