K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (11:35)

a: xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)

nên \(\hat{BAC}=60^0\)

ΔACB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)

=>\(CB=R\sqrt3\)

c: Xét (O) có

MC,MB là các tiếp tuyến

Do đó: MC=MB

=>M nằm trên đường trung trực của CB(1)

ta có: OC=OB

=>O nằm trên đường trung trực của CB(2)

Từ (1),(2) suy ra MO là đường trung trực của CB

=>MO⊥CB

mà CA⊥CB

nên CA//OM

d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB

ΔACB vuông tại C

=>CA⊥CB tại C

=>CB⊥AK tại C

=>ΔKCB vuông tại C

Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)

\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)

\(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)

nên \(\hat{MCK}=\hat{MKC}\)

=>MC=MK

mà MC=MB

nên MB=MK(3)

ta có: KB⊥BA

CH⊥BA

DO đó: KB//CH

Xét ΔAMK có CI//MK

nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)

Xét ΔAMB có IH//MB

nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)

từ (3),(4),(5) suy ra CI=IH

=>I là trung điểm của CH

=>MA đi qua trung điểm I của CH

30 tháng 9 2015

bạn nhập câu hỏi vào google sẽ có đáp án ngay 

8 tháng 5 2018

ó vẽ hình ko ?

9 tháng 5 2018

A B K O I H E M F