K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC

=> OA=OB=OC và O là trung điểm của BC

=> Tam giác ABC vuông tại A

=> góc BAC = 90 độ

b) DO tam giác HAK nội tiếp đường tròn (I) 

Lại có góc HAK = 90 độ

=> HK là đường kính của (I)

=> HK đi qua I

=> H,I,K thẳng hàng

c) Đề bài ghi ko rõ

d) 3 điểm nào?

3 tháng 2 2019

A B C O H K I D E G 1 1 1

a, Xét \(\Delta BAC\)có OA = OB = OC ( = R )

=> \(\Delta BAC\)vuông tại A

\(\Rightarrow\widehat{BAC}=90^o\)

b, Xét \(\Delta AHO\) có IA = IH = IO (Bán kính (I))

=> \(\Delta AHO\)vuông tại H

=> \(\widehat{AHO}=90^o\)

Tương tự \(\widehat{AKO}=90^o\)

Tứ giác AHOK có 3 góc vuông nên là hcn

=> Trung điểm I của OA cũng là trung điểm của HK

Vì OA = OB ( = R )

=> \(\Delta AOB\)cân tại O

\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)

Xét \(\Delta AHK\)vuông tại A có I là trung điểm HK

=> IA = IH

\(\Rightarrow\Delta AIH\)cân tại I

\(\Rightarrow\widehat{A_1}=\widehat{H_1}\)

Do đó \(\widehat{H_1}=\widehat{B_1}\)

=> HI // BC (so le trong)

Tương tự IK // BC

Do đó H , I , K thẳng hàng (tiên đề Ơ-clit)

c, Xét \(\Delta AOB\)cân tại O có OH là đường cao

=> OH là đường trung trực của AB

Mà điểm D thuộc OH

=> DA = DB

Tương tự EA = EC 

Khi đó BD + CE = DA + EA = DE (DDpcm0+)

d,Gọi G là trung điểm DE 

Mà tam giác DOE vuông tại D nên G là tâm (DOE)

Dễ thấy BD , CE là tiếp tuyến (O)

Nên BD , CE cùng vuông với BC

=> BD // CE

=> BDEC là hình thang

Mà GO là đường trung bình (dễ)

=> GO // BD

=> GO vuông với BC

Mà O thuộc BC

=> (DOE) tiếp xúc BC

21 tháng 7 2019

A B C P Q R O D E S T K L M N H A B C I M N P E F R

a) Ta có O là tâm ngoại tiếp \(\Delta\)ABC nên ^OAC = 900 - ^ABC hay ^OAC + ^ABC = 900

Đường tròn đường kính OP cắt AB,AC tại D,E => ^ABC = ^AED. Do đó ^OAC + ^AED = 900

Suy ra OA vuông góc với DE (đpcm).

b) Bổ đề (Quan sát hình bên phải) Xét tam giác ABC nội tiếp đường tròn. Một đường tròn (R) tiếp xúc với hai cạnh AB,AC đồng thời tiếp xúc trong với đường tròn (ABC) lần lượt tại M,N,P. Khi đó MN đi qua tâm nội tiếp của tam giác ABC.

Thật vậy: Gọi I là tâm nội tiếp \(\Delta\)ABC. Ta thấy R vừa tiếp xúc dây AC tại N, vừa tiếp xúc trong với (ABC) tại P

Từ đó dễ suy ra PN đi qua điểm chính giữa (AC. Tương tự PM đi qua điểm chính giữa (AB

Gọi PM,PN cắt (ABC) lần lượt tại F,E thì CF cắt BE tại I (Vì I là tâm nội tiếp \(\Delta\)ABC)

Áp dụng ĐL Pascal cho bộ 6 điểm F,A,E,B,P,C ta thu được M,I,N thẳng hàng.

Quay trở lại bài toán: Gọi T là trung điểm OP. Hạ TH,TM,TN lần lượt vuông góc với DE,PB,PC

Có ^PEC = ^PBC = ^CAB => PE // AD. Tương tự PD // AE, suy ra tứ giác ADPE là hình bình hành

Dễ thấy T là tâm của (OP) và ^ETD = 2^EPD = 2^BAC = Sđ(BC(O) = const

Mà TD = TE = OP/2 = const nên độ dài đường cao của \(\Delta\)DTE không đổi hay TH =  const

\(\Delta\)HTE = \(\Delta\)MTP = \(\Delta\)NTP (Ch.gn) => TH = TM = TN. Do vậy T cố định và là tâm nội tiếp \(\Delta\)PQR

Nếu ta gọi (S) là đường tròn tiếp xúc với PQ,PR lần lượt tại K,L và tiếp xúc trong với (PQR)

Thì lúc này K,T,L thẳng hàng (Bổ đề). Theo tính chất 2 tiếp tuyến giao nhau thì PK = PL

=> \(\Delta\)KPL cân tại P và nhận PT làm đường cao. Ta thấy P,T,N đều cố định (cmt) nên PT,PN không đổi

Áp dụng hệ thức lượng trong tam giác vuông có PT2 = PN.PL => PL = const

Ta lại có PL2 = PT.PS, từ đây có PS = const. Mà S nằm trên tia PT cố định nên S cố định

Đồng thời SL2 = SK2 = PS2 - PL2 = const. Suy ra đường tròn (S) cố định

Vậy thì đường tròn ngoại tiếp \(\Delta\)PQR luôn tiếp xúc với đường tròn (S) cố định (đpcm).

*) Nhận xét: Đường tròn (R) được nêu trong bổ đề chính là đường tròn Mixtilinear của tam giác ABC.

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

8 tháng 7 2021

O A B D E C H P F N M I

a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)

Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)

Gọi I là tiếp điểm của FN với (O). Ta có:

\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)

Suy ra tứ giác MNCO nội tiếp.

b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp

Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)

Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)

Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.

c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)

Theo hệ thức lượng thì:

\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)

\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)