Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)
Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)
Tương tự => EI = 1/2 BC (3)
Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC
=>E, B, C, F thuộc một đường tròn
Xét (O) có
^ABC = 900 ( góc nr chắn nửa đường tròn )
=> ^ABD' = 900
=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn
=> A;O';D thẳng hàng
a gọi I là trung điểm của A=> I thuộc đường tròn (O) vì OI-1/2.)OA=1.2.2R=R= BK
có AB,AC là tiếp tuyến của (O)
=>góc ABO=góc ACO=90 độ
=> tam giác ABO vuông tại B, có BI là đường trung tuyến
=> BI=OI=IA
có OI=OC=OB
=> tứ giác OBIC là hình thoi
=> OI là đường phân giác của góc BIC(tính chất hình thoi) hay AI là phân giác góc BAC(1)
lại có ABOC nội tiếp(O) (cmt)
=> AO vuông góc với BC hay AI vuông góc với BC(2), AB=AC(3)
từ (1)(2)(3)=> tam giác ABC đều
O A B C D E
a) Ta thấy ngay \(\widehat{BDA}=\widehat{CBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cung cùng chắn một cung)
Vậy nên \(\Delta ABC\sim\Delta ADB\left(g-g\right)\)
b) Do \(\Delta ABC\sim\Delta ADB\Rightarrow\frac{AB}{AD}=\frac{AC}{AB}\Rightarrow AB^2=AD.AC\)
Xét tam giác vuông OBA có \(AB=\sqrt{AO^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
Vậy nên \(AD.AC=AB^2=3R^2\)
c) Ta thấy rằng \(\Delta ABC\sim\Delta ADB\Rightarrow\widehat{ABC}=\widehat{ADB}\)
Vậy thì \(\widehat{BEA}=\widehat{DBE}+\widehat{BDE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABE}\)
Suy ra tam giác ABE cân tại A hay AB = AE.
Do A, B cố định nên AE không đổi.
Vậy khi cát tuyến ACD quay xung quanh A thì E di chuyển trên đường tròn tâm A, bán kính AB.
d) Ta có AC.AD = 3R2 ; AC + AD = 7R/2
nên ta có phương trình \(AC\left(\frac{7R}{2}-AC\right)=3R^2\)
\(\Leftrightarrow AC^2-\frac{7R}{2}AC+3R^2=0\Leftrightarrow AC=2R\)
\(\Rightarrow AD=\frac{3R}{2}\)
A B C D O E F Q P R K L M I H S
a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.
Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)
=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).
b) Gọi giao điểm của AC và BF là M.
Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM
=> \(\Delta\)AMF cân đỉnh M => AM=FM.
Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC
=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB
=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.
Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900
=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ
Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ
=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)
Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật
=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).
c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.
Theo chứng minh ở câu a): \(AB.AC=AD.AE\)
\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)
Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)
\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)
Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)
\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)
Nhân (1) với (2) theo vế, ta được:
\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)
Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE
=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:
\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)
Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)
Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)
\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)
Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).
a, Xét tam giác ACD và tam giác BED
^CAE = ^CBE ( cùng chắn cung CE )
^ACB = ^BEA ( cùng chắn cung AB )
Vậy tam giác ACD ~ tam giác BED ( g.g ) (1)
b, Trong (O) có AE giao BC = D
Xét tam giác ABD và tam giác CED ta có :
^ADB = ^CDE ( đối đỉnh )
^ABC = ^CEA ( cùng chắn cung AC )
Vậy tam giác ABD ~ tam giác CED ( g.g )
=> \(\frac{AB}{CE}=\frac{AD}{CD}\Rightarrow AB.CD=AD.CE\)