Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2 tam giác HIE và HFA đồng dạng do có góc tại đỉnh H bằng nhau và góc HIE = góc FA (cùng chắn cung A của Q) => HI / HF = HE / HA => HI*HA = HE*HF ♦
2 ∆ HEB và HCF đồng dạng do có góc tại đỉnh H bằng nhau và góc HEB = góc HCF (cùng chắn cung BF của O) => HE / HC = HB / HF => HB*HC = HE*HF ♥
(Nếu bạn đã học phương tích của điểm đối với đường tròn thì có ngay ♦ và ♥ không cần cm vì ♦ chính là pt của H đối với Q còn ♥ là pt của H đối với O)
♦, ♥ => HI*HA = HB*HC => HI*(AI - HI) = (x - HI)(x + HI) => HI*AI = x²
=> HI = x² / AI = hằng số (A, I cố định nên AI không đổi)
=> H cố định.
Dễ thấy OIHK nội tiếp đường tròn (P) => đường tròn ngoại tiếp ∆ IOK chính là (P). Tâm đường tròn (P) dĩ nhiên nằm trên trung trực k của HI mà trung trực này cố định do H, I cố định. Vậy tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc k cố định
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này căng đấy =))
C E B A D O I H
a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)
nên : \(AB\perp OB\)( tc tiếp tuyến )
\(\Rightarrow\widehat{ABO}=90^o\)(1)
Do H là trung điểm của dây DE (gt)
nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )
\(\Rightarrow\widehat{AHO}=90^o\)(2)
- Xét tứ giác ABOH ta có :
+) \(\widehat{ABO}\)và \(\widehat{AHO}\)là hai góc đối diện
+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))
=> ABOH là tứ giác nội tiếp
=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )
b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)
+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )
Xét 2 tam giác : ABD và AEB có :
\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)
P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)
=>\(\widehat{ABO}+\widehat{ACO}=180^0\)
=> tứ giác ABOC nội tiếp
=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))
b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)
=> AO là đường trung trực của BC
=> \(AH\perp BC,HB=HC\)
=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)
=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)
\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )
=> IB là tia phân giác của góc ABC
c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)
mà \(OC=OD=>OC^2=OD^2\)
=>\(OD^2=OH.OA\)
mình làm lại nha
câu c, d nè :
c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có
\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)
gọi J là là tâm đường tròn ngoại tiếp tam giác AHD
khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)
zậy
\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)
=> OD là ....
d) CHỉ ra M, N thuộc trung trực AH
theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)
Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC
zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD
=> J trùng E
zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH
mặt khác M , N đều thuộc trung trực của AH nên M ,E ,N thẳng hàng