Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
hình tự vẽ nhe
a, \(DE\perp MD\)( ME là đường kính )
mà \(\left\{{}\begin{matrix}ED//HN\left(cmt\right)\\MD//EI\left(EIMK:hbh\right)\end{matrix}\right.\)
=> HN⊥EI
mà EC ⊥MC ( ME là đường kính)
khi đó : CN cùng nhìn với EH dưới góc vuông
Vậy ENCH nội tiếp.( đpcm)
b, gọi điểm giao nhau giữa FD và MH là G
ta có :
góc HNG = góc HEG ( ENCH nội tiếp)
góc EDG = góc HNG ( đồng vị)
từ đó suy ra:
góc HEG = góc EDG
<=> góc HEG là góc giữa tiếp tuyến và dây cung
hay nói cách khác: EF là tiếp tuyến của (O)( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này bạn từng gửi rồi phải không nhỉ? Bạn tham khảo câu trả lời tại đây nghen
https://hoc24.vn/cau-hoi/cho-o-duong-kinh-abhai-diem-ik-thuoc-ab-sao-cho-oiokm-bat-ki-thuoc-omomimk-cat-o-lan-luot-tai-ecd-cat-ab-tai-fei-cat-df-tai-nmi-cat-e.4642078897220
![](https://rs.olm.vn/images/avt/0.png?1311)
Tứ giác MKEI là hình bình hành (2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow KD||IN\Rightarrow\dfrac{FK}{FI}=\dfrac{FD}{FN}\) (Talet)
\(KE||IH\Rightarrow\dfrac{FK}{FI}=\dfrac{FE}{FH}\)
\(\Rightarrow\dfrac{FD}{FN}=\dfrac{FE}{FH}\Rightarrow DE||HN\) (Talet đảo)
ME là đường kính \(\Rightarrow\widehat{MCE}\) là góc nt chắn nửa đường tròn
\(\Rightarrow CE\perp CM\Rightarrow\widehat{HCE}=90^0\)
Tương tự ta có \(MD\perp DE\) , mà \(\left\{{}\begin{matrix}MD||NE\\DE||HN\end{matrix}\right.\) \(\Rightarrow NE\perp HN\)
\(\Rightarrow C\) và N cùng nhìn HE dưới 1 góc vuông nên ENCH nội tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
mình không vẽ hình nhé
a) \(\Delta ABD~\Delta AFE\left(g.g\right)\Rightarrow\frac{AB}{AF}=\frac{AD}{AE}\Rightarrow AB.AE=AD.AF\)
b) AM cắt BD tại H
Xét \(\Delta AEF\)có M là trung điểm EF
\(\Rightarrow AM=MF=ME\)
\(\Rightarrow\Delta AMF\)cân tại M
\(\Rightarrow\widehat{MAF}=\widehat{MFA}=\widehat{ABD}\)
Mà \(\widehat{ABD}+\widehat{ADB}=90^o\Rightarrow\widehat{MAF}+\widehat{ADB}=90^o\)
\(\Rightarrow\widehat{AHD}=90^o\Rightarrow AM\perp BD\)
c) vì AK là dây chung của hai đường tròn ( O ) và ( M ) nên \(OM\perp AK\)
Xét \(\Delta AMS\)có MO và AO là đường cao nên O là trực tâm
\(\Rightarrow SO\perp AM\)( 1 )
Mà \(BD\perp AM\)( 2 )
Từ ( 1 ) và ( 2 ) nên B,D,S thẳng hàng