Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
EA,EC là các tiếp tuyến
Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)
Ta có: OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC tại M
Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)
nên CMON là hình chữ nhật
=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)
Ta có: ΔCHO vuông tại H
=>H nằm trên đường tròn đường kính CO(2)
Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO
mà O cố định
nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định
a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)
b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC
D1=D2(t/c 2 tiếp tuyến cắt nhau)
Xét tam giác DHA=DHC(c.g.c).....nênH1=H2
Mà H1+H2=180....nên H1=H2=90...
A B O C H D E F K M I J
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)DB tại C
Xét (O) có
EA,EC là tiếp tuyến
Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)
EA=EC
=>E nằm trên đường trung trực của AC(1)
OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC
b: OE\(\perp\)AC
AC\(\perp\)BD
Do đó: OE//BD
Xét ΔDAB vuông tại A có AC là đường cao
nên \(BC\cdot BD=BA^2=4R^2\)
c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)
\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)
mà \(\widehat{EAC}=\widehat{ECA}\)
nên \(\widehat{EDC}=\widehat{ECD}\)
=>ED=EC
mà EC=EA
nên EA=ED
d: Xét ΔOCF và ΔOBF có
OC=OB
CF=BF
OF chung
Do đó: ΔOCF=ΔOBF
=>\(\widehat{OCF}=\widehat{OBF}=90^0\)
=>FB là tiếp tuyến của (O)
e: ΔOBF=ΔOCF
=>\(\widehat{BOF}=\widehat{COF}\)
=>OF là phân giác của \(\widehat{COB}\)
=>\(\widehat{COB}=2\cdot\widehat{COF}\)
\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)
\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔEOF vuông tại O