Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB=AC và \(\widehat{BAC}=90^0\)
nên ΔABC vuông cân tại A
b: ΔOAE cân tại O
mà OC là đường cao
nên OC là tia phân giác của \(\widehat{AOE}\)
Xét ΔOAC và ΔOEC có
OA=OC
\(\widehat{AOC}=\widehat{EOC}\)
OC chung
Do đó: ΔOAC=ΔOEC
=>\(\widehat{OEC}=\widehat{OAC}=90^0\)
=>CE là tiếp tuyến của (O)

O A B C H D K I
a, Vì OB = OC ( =R )
AB = AC (tiếp tuyến)
=> OA là trung trực BC
=> OA vuông góc BC
Vì AB là tiếp tuyến (O)
\(\Rightarrow OB\perp AB\)
=> t/g OAB vuông tại B
Xét t/g OAB vuông tại B có BH là đường cao
=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)
b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)
=> \(\Delta\)BCD vuông tại C
=> \(BC\perp CD\)
Mà \(BC\perp OA\)
=> CD // OA

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
a: Xét (O) có
ΔADB nội tiếp
BA là đường kính
Do đó: ΔADB vuông tại D
=>AD vuông góc với OC
Ta có: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của gócAOD
Xét ΔCAO và ΔCDO có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔCAO=ΔCDO
=>CA=CD
b: ΔCAO=ΔCDO
nên góc CDO=90 độ
=>CD là tiếp tuyến của (O)
c: \(OC=\dfrac{15^2}{9}=25\left(cm\right)\)
=>\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)