cho (O) 2 dây AB và CD vuông góc với nhau tại M. Gọi H và K lần lư...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

A B C D H K E F M

Hai tam giác AMC và DHE đồng dạng vì hai tam giac vuông và có góc A = góc D (hai góc nội tiếp cùng chắn 1 cung)

Tam giác DHE đồng dạng với tam giác AME vì hai tam giác vuông có hai góc đối đỉnh 

=> Tam giác AMC và AME đồng dạng, mà có chung cạnh AM nên hai tam giác bằng nhau => CM = EM

Tương tự cũng chứng minh đc AM = MF

=> ACFE là hình bình hành (có 2 đường chéo cắt nhau tại trung điểm mỗi đương)

Mà hai đường chéo vuông góc với nhau => ACFE là hình thoi

17 tháng 5 2021

Huhu mng ơi giúp em phần c với :<

 

6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .

23 tháng 1 2018

2). Từ  Δ O B E = Δ O D C ⇒ O E = O C .

Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.

Từ đó  O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

7 tháng 5 2018

1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.

Ta lại có    Q P S ^ = Q A B ^ = Q R B ^  .

Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q  (g – g),

nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.

Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F  nội tiếp.

Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F  luôn đi qua M.