Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔCAB nội tiếp đường tròn(C,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔCAB vuông tại C(Định lí)
⇔\(\widehat{ACB}=90^0\)
hay \(\widehat{KCB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối
\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ
=>AM vuông góc MB và AC vuông góc CB
góc BHK+góc BCK=180 độ
=>BHKC nội tiếp
góc EIA+góc EMA=180 độ
=>EIAM nội tiếp
b: Xét ΔAMK và ΔACM có
góc AMK=góc ACM(=góc ABM)
góc MAK chung
=>ΔAMK đồng dạng với ΔACM
=>AM/AC=AK/AM
=>AM^2=AK*AC
c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BI*BA=BM*BE
=>AE*AC+BM*BE=AB^2
a: góc ACB=1/2*sđ cung AB=90 độ
Vì góc KHB+góc KCB=180 độ
=>BHKC nội tiếp
Xét ΔAHK vuông tại H và ΔACB vuôg tại C có
góc HAK chung
=>ΔAHK đồng dạng với ΔACB
=>AH/AC=AK/AB
=>AH*AB=AC*AK
b: Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BM*BE=BI*BA
Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
=>BE*BM+AE*AC=AI*AB+BI*AB=AB^2 ko đổi
ABCM nội tiếp (cùng thuộc đường tròn đường kính AB)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\) (cùng chắn AM)
Lại có \(\widehat{ABM}=\widehat{AMH}\) (cùng phụ \(\widehat{BAM}\))
\(\Rightarrow\widehat{ACM}=\widehat{AMH}\)
Xét hai tam giác AMK và ACM có:
\(\left\{{}\begin{matrix}\widehat{AMH}=\widehat{ACM}\left(cmt\right)\\\widehat{MAC}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AMK\sim\Delta ACM\left(g.g\right)\)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AK}{AM}\Rightarrow AM^2=AK.AC\)