K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2023

ABCM nội tiếp (cùng thuộc đường tròn đường kính AB) 

\(\Rightarrow\widehat{ABM}=\widehat{ACM}\) (cùng chắn AM)

Lại có \(\widehat{ABM}=\widehat{AMH}\) (cùng phụ \(\widehat{BAM}\))

\(\Rightarrow\widehat{ACM}=\widehat{AMH}\)

Xét hai tam giác AMK và ACM có:

\(\left\{{}\begin{matrix}\widehat{AMH}=\widehat{ACM}\left(cmt\right)\\\widehat{MAC}\text{ chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AMK\sim\Delta ACM\left(g.g\right)\)

\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AK}{AM}\Rightarrow AM^2=AK.AC\)

NV
6 tháng 3 2023

loading...

a) Xét (O) có 

ΔCAB nội tiếp đường tròn(C,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔCAB vuông tại C(Định lí)

\(\widehat{ACB}=90^0\)

hay \(\widehat{KCB}=90^0\)

Xét tứ giác BHKC có

\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối

\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ

=>AM vuông góc MB và AC vuông góc CB

góc BHK+góc BCK=180 độ

=>BHKC nội tiếp

góc EIA+góc EMA=180 độ

=>EIAM nội tiếp

b: Xét ΔAMK và ΔACM có

góc AMK=góc ACM(=góc ABM)

góc MAK chung

=>ΔAMK đồng dạng với ΔACM

=>AM/AC=AK/AM

=>AM^2=AK*AC

c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AC*AE

Xét ΔBIE vuông tại I và ΔBMA vuông tại M có

góc IBE chung

=>ΔBIE đồng dạng với ΔBMA

=>BI/BM=BE/BA

=>BI*BA=BM*BE

=>AE*AC+BM*BE=AB^2

a: góc ACB=1/2*sđ cung AB=90 độ

Vì góc KHB+góc KCB=180 độ

=>BHKC nội tiếp

Xét ΔAHK vuông tại H và ΔACB vuôg tại C có

góc HAK chung

=>ΔAHK đồng dạng với ΔACB

=>AH/AC=AK/AB

=>AH*AB=AC*AK

b: Xét ΔBIE vuông tại I và ΔBMA vuông tại M có

góc IBE chung

=>ΔBIE đồng dạng với ΔBMA

=>BI/BM=BE/BA

=>BM*BE=BI*BA

Xét ΔAIE vuông tại I và ΔACB vuông tại C có

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AC*AE
=>BE*BM+AE*AC=AI*AB+BI*AB=AB^2 ko đổi