Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ho nửa đường tròn (O;R) đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Đường thẳng OD cắt AC tại M. Từ A, kẻ AH vuông góc với OD tại H ( H thuộc OD). Đường thẳng AH cắt DB tại N và cắt nửa đường tròn (O;R) tại E. Yêu cầu: a) Chứng minh rằng các tứ giác MCNH và ADCH nội tiếp. b) Chứng minh đẳng thức: HM⋅HD=HN⋅HA

a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CD=CM+DM(M nằm giữa C và D)
mà CM=CA(cmt)
và DM=DB(cmt)
nên CD=CA+DB