Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AM,AC là tiếp tuyến
Do đó: AM=AC và OA là tia phân giác của \(\widehat{MOC}\)
=>\(\widehat{MOC}=2\cdot\widehat{MOA}\)
Xét (O) có
BM,BD là tiếp tuyến
Do đó: BM=BD và OB là phân giác của \(\widehat{MOD}\)
=>\(\widehat{MOD}=2\cdot\widehat{MOB}\)
\(\widehat{MOC}+\widehat{MOD}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOA}+2\cdot\widehat{MOB}=180^0\)
=>\(2\left(\widehat{MOA}+\widehat{MOB}\right)=180^0\)
=>\(\widehat{MOA}+\widehat{MOB}=\dfrac{180^0}{2}=90^0\)
=>\(\widehat{AOB}=90^0\)
b: AB=AM+BM
mà AM=AC và BM=BD
nên AB=AC+BD
c: Xét ΔOAB vuông tại O có OM là đường cao
nên \(AM\cdot MB=OM^2\)
=>\(AC\cdot BD=R^2\) không đổi khi M di chuyển trên (O)
góc CID=1/2*180=90 độ
=>CI vuông góc HD
góc CND=1/2*180=90 độ
=>DN vuông góc CH
Vì góc HNM+góc HIM=180 độ
nên HNMI nội tiếp
Xét ΔGCD vuông tại C có CN là đường cao
nên CN^2=NG*ND
Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa
Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
- MA là tia phân giác của góc HMC
Vậy C, M, D thẳng hàng.
A B O C D M E F K I N L
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).