Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề : Cho đoạn thẳng AB cùng điểm C thuộc đoạn thẳng đó (C khác A và B). Về cùng một nửa mặt phẳng bờ AB, kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm M cố định. Kẻ tia Cz vuông góc với tia CM tại C, tia Cz cắt tia By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
:v Làm bài 31 thôi nhá , còn lại all tự làm -..-
Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).
Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)
+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)
Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)
Diện tích tăng thêm 36 cm2 nên ta có p/trình :
\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)
\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)
\(\Leftrightarrow xy+3x+3y+9=xy+72\)
\(\Leftrightarrow3x+3y=63\)
\(\Leftrightarrow x+y=21\)
+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).
Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)
Diện tích giảm đi 26cm2 nên ta có phương trình :
\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)
\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)
\(\Leftrightarrow xy-4x-2y+8=xy-52\)
\(\Leftrightarrow4x+2y=60\)
\(\Leftrightarrow2x+y=30\)
Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)
Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :
\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)
Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm
a) Để chứng minh CM PQ = PN + NQ, ta sẽ sử dụng định lí Pitago trong tam giác vuông.
Gọi A là giao điểm của tiếp tuyến Mx và Ny. Ta có tam giác AMP và tam giác ANQ là tam giác vuông tại M và N.
Theo định lí Pitago, ta có:
AM^2 = AP^2 + PM^2
AN^2 = AQ^2 + NQ^2
Vì tam giác AMP và tam giác ANQ là tam giác vuông, nên ta có:
AP = AM - PM
AQ = AN - NQ
Thay vào các công thức trên, ta có:
AM^2 = (AM - PM)^2 + PM^2
AN^2 = (AN - NQ)^2 + NQ^2
Mở ngoặc và rút gọn, ta có:
AM^2 = AM^2 - 2AM*PM + PM^2 + PM^2
AN^2 = AN^2 - 2AN*NQ + NQ^2 + NQ^2
Simplifying, we have:
2AM*PM = 2AN*NQ
Chia cả hai vế cho 2, ta có:
AM*PM = AN*NQ
Vì AM = AN (vì là đường kính của nửa đường tròn), nên ta có:
PM = NQ
Do đó, ta có:
PQ = PM + NQ
Vậy, CM PQ = PN + NQ đã được chứng minh.
b) Để chứng minh CM góc PIO = 90 độ, ta sẽ sử dụng tính chất của tiếp tuyến và tiếp tuyến chung.
Gọi O là tâm của nửa đường tròn. Ta có:
Góc PIO = Góc PIM + Góc MIO
Vì PM là tiếp tuyến của đường tròn tại M, nên góc PIM = 90 độ.
Vì Mx và Ny là tiếp tuyến chung, nên góc MIO = góc NIO.
Vậy, góc PIO = 90 độ đã được chứng minh.
c) Để chứng minh CM MN là tiếp tuyến của đường tròn đường kính PQ, ta sẽ sử dụng tính chất của tiếp tuyến và góc chóp đồng quy.
Gọi O là tâm của nửa đường tròn. Ta có:
Góc MON = Góc MOP + Góc NOP
Vì MN là tiếp tuyến của đường tròn tại M, nên góc MOP = 90 độ.
Vì Mx và Ny là tiếp tuyến chung, nên góc NOP = góc NMO.
Vậy, góc MON = 90 độ.
Do đó, MN là tiếp tuyến của đường tròn đường kính PQ đã được chứng minh.
tui chx học góc chóp đồng quy