K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

Cho góc vuông $xOy$. Lấy các điểm $I$ và $K$ lần lượt trên tia $Ox$ và tia $Oy$. Vẽ đường tròn tâm $I$ bán kính $OK$ cắt tia $Ox$ tại $M$ ($I$ nằm giữa $O$ và $M$). Vẽ đường tròn tâm $K$ bán kính $OI$ cắt tia $Oy$ tại $N$ ($K$ nằm giữa $O$ và $N$). a) Chứng minh hai đường tròn $(I)$ và $(K)$ luôn cắt nhau. b) Tiếp tuyến tại $M$ của đường tròn $(I)$ và tiếp tuyến tại $N$ của đường tròn $(K)$ cắt...
Đọc tiếp

Cho góc vuông $xOy$. Lấy các điểm $I$ và $K$ lần lượt trên tia $Ox$ và tia $Oy$. Vẽ đường tròn tâm $I$ bán kính $OK$ cắt tia $Ox$ tại $M$ ($I$ nằm giữa $O$ và $M$). Vẽ đường tròn tâm $K$ bán kính $OI$ cắt tia $Oy$ tại $N$ ($K$ nằm giữa $O$ và $N$).
a) Chứng minh hai đường tròn $(I)$ và $(K)$ luôn cắt nhau.
b) Tiếp tuyến tại $M$ của đường tròn $(I)$ và tiếp tuyến tại $N$ của đường tròn $(K)$ cắt nhau tại $C$. Chứng minh tứ giác $OMCN$ là hình vuông.
c) Gọi giao điểm của hai đường tròn $(I)$, $(K)$ là $A$ và $B$. Chứng minh ba điểm $A$, $B$, $C$ thẳng hàng.
d) Giả sử $I$ và $K$ theo thứ tự di động trên các tia $Ox$ và $Oy$ sao cho $OI + OK =  a$ (không đổi). Chứng minh rằng đường thẳng $AB$ luôn đi qua một điểm cố định.

51
11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

a) Trong tam giác OIK có:

|OK  OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣Rr<IK<R+r.

Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông). 
Mà OM = OI + IM = OI + OK;

      ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOIΔBLP=ΔKOI.  Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.