Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi H là giao điểm của AO và BC
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có \(OA^2=OB^2+BA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2+9=25\)
=>\(BA^2=25-9=16\)
=>BA=4(cm)
AB=AC
mà AB=4cm
nên AC=4cm
Xét ΔBAO vuông tại B có BH là đường cao
nên \(BH\cdot OA=OB\cdot BA\)
=>\(BH\cdot5=3\cdot4=12\)
=>BH=12/5=2,4(cm)
H là trung điểm của BC
=>BC=2*BH=2*2,4=4,8(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=4+4+4,8=12,8\left(cm\right)\)
b: Xét (O) có
NM,NB là tiếp tuyến
Do đó: NM=NB và ON là phân giác của góc MOB
ON là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{NOM}\)
Xét (O) có
QM,QC là tiếp tuyến
Do đó: QM=QC và OQ là phân giác của \(\widehat{MOC}\)
OQ là phân giác của góc MOC
=>\(\widehat{MOC}=2\cdot\widehat{MOQ}\)
Chu vi tam giác AQN là:
\(C_{ANQ}=AN+NQ+AQ\)
\(=AN+NM+MQ+AQ\)
\(=AN+NB+QC+AQ\)
=AB+AC
=4+4
=8(cm)
c: Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
Xét (O) có
AB,AC là tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}\simeq106^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(2\cdot\left(\widehat{NOM}+\widehat{QOM}\right)=\widehat{BOC}\)
=>\(2\cdot\widehat{NOQ}=\widehat{BOC}\)
=>\(\widehat{NOQ}=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\simeq53^0\)
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Ta có: CM+DM=CD
nên CD=CA+DB
b: Từ (1) và (2) suy ra \(\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=90^0\)
=>\(\widehat{COD}=90^0\)
hay ΔCOD vuông tại O
Bạn tự vẽ hình nhé :
1.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\)
\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC
Tương tự DMOB nội tiếp đường tròn đường kính OD
2 . Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)
Tương tự DM = DB , OD là phân giác ^BOM
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)
\(\Rightarrow OC\perp OD\)
Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)
Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)
3.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CO\perp AM=E\) là trung điểm AM
Tương tự \(OD\perp BM=F\) là trung điểm BM
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)
Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)
\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM
\(\Rightarrow EFNO\) nội tiếp
\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)
Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO )
\(\Rightarrow EFON\) là hình thang cân
b) Xét tứ giác OMCN có:
∠(OMC) = 90 0 (AC ⊥ OD)
∠(ONC) = 90 0 (CB ⊥ OE)
∠(NCM) = 90 0 (AC ⊥ CB)
⇒ Tứ giác OMCN là hình chữ nhật
Theo tc 2 tt cắt nhau: \(MC=AC;MD=BD\)
\(\left\{{}\begin{matrix}\widehat{CAO}=\widehat{CMO}=90^0\\AC=CM\\CO.chung\end{matrix}\right.\Rightarrow\Delta ACO=\Delta MCO\left(ch-cgv\right)\\ \Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{1}{2}\widehat{AOM}\\ \left\{{}\begin{matrix}\widehat{OMD}=\widehat{OBD}=90^0\\MD=BD\\OD.chung\end{matrix}\right.\Rightarrow\Delta BDO=\Delta MDO\left(ch-cgv\right)\\ \Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{1}{2}\widehat{BOM}\)
Ta có \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{AOM}\right)=\dfrac{1}{2}\widehat{AOB}=\dfrac{1}{2}\cdot180^0=90^0\)
Vậy DOC vuông tại O