K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

a) Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối  OI.

Ta có:  ˆAOI+ˆBOI=180∘AOI^+BOI^=180∘ (hai góc kề bù)

              OM là tia phân giác cảu góc AOI (tính chất hai tiếp tuyến cắt nhau)

 

Quảng cáo

 

              ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra: OM ⊥ ON (tính chất hai góc kề bù)

Vậy ˆMON=90∘MON^=90∘

b) Ta có:  MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà:        MN = MI + IN

Suy ra:   MN = AM + BN

c) Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến) theo hệ thức lượng trong tam giác vuông, ta có:

OI2=MI.NIOI2=MI.NI

Mà:                  MI = MA, NI = NB (chứng minh trên)

Suy ra:             AM.BN=OI2=R2AM.BN=OI2=R2.

good luck!

Cho nửa đường tròn (O) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ hai tiếp tuyến Ax và By với (O). Lấy M bất kì trên (O). Kẻ tiếp tuyến thứ 3 với nửa đường tròn tại M cắt Ax và By tại C và D.1) CMR: Tam giác COD là tam giác vuông và tích AC.BD không phụ thuộc vào vị trí của M.2) AM cắt OC tại E, BM cắt OD tại F. Tứ giác MÈO là hình gì?3) Tứ giác AEFO; ADFB là...
Đọc tiếp

Cho nửa đường tròn (O) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ hai tiếp tuyến Ax và By với (O). Lấy M bất kì trên (O). Kẻ tiếp tuyến thứ 3 với nửa đường tròn tại M cắt Ax và By tại C và D.

1) CMR: Tam giác COD là tam giác vuông và tích AC.BD không phụ thuộc vào vị trí của M.

2) AM cắt OC tại E, BM cắt OD tại F. Tứ giác MÈO là hình gì?

3) Tứ giác AEFO; ADFB là hình gì?

4)CMR: EC.EO + FO.FD = R2

5) CMR: AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.

6) Xác định vị trí của M để chu vi; diện tích hình thang ACDB đạt giá trị nhỏ nhất.

7) Tia BM cắt Ax tại K. CMR: C là trung điểm AK.

8) Kẻ đường cao MH của tam giác AMB. MH cắt BC tại N; CMR: N là trung điểm MH và A, N, D thẳng hàng.

1

1: Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{MOA}\)

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{MOB}\)

Ta có: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\left(\widehat{MOA}+\widehat{MOB}\right)\cdot\dfrac{1}{2}\)

\(=180^0\cdot\dfrac{1}{2}=90^0\)

hay ΔCOD vuông tại O 

Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: DB=DM

\(AC\cdot BD=CM\cdot MD=OM^2\) không phụ thuộc vào vị trí của M

21 tháng 12 2016

TIA BM CAT Ax TAI, N TIEP THEO TU LAM

29 tháng 5 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác OMCN có:

∠(OMC) = 90 0  (AC ⊥ OD)

∠(ONC) = 90 0  (CB ⊥ OE)

∠(NCM) = 90 0  (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

2 tháng 8 2020

Tui biết vẽ hình rồi nhá cho lời giải nha :)))

2 tháng 8 2020

Gọi H là chân đường vuông góc hạ từ O xuống CD

Ta CM : OH = OB = R ( O )

Tia CO cắt tia đối của tia By tại E

Xét tam giác OAC và OBE có :

góc A + góc B = 900 ( t/c tiếp tuyến )

góc AOC = BOE ( đối đỉnh )

OA = OB (=R)

=> tam giác OAC = OBE ( g.c.g ) => OC = OE

Tam giác DEC có DO vừa là đường cao vừa là trung tuyến nên là tam giác cân. Khi đó DO cũng là đường phân giác 

=> Ta có : OH vuông góc CD, OH = OB = R ( O ) nên CD tiếp xúc với (O) tại H