Cho nửa đường tròn $(O)$ đường kính $AB$. Vẽ tia tiếp tuyến $Ax$ cùng phía với nửa đường tròn đường...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)MB tại D

Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>M nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1),(2) suy ra MO là đường trung trực của AC

=>MO\(\perp\)AC tại E và E là trung điểm của AC

Xét tứ giác AEDM có \(\widehat{AEM}=\widehat{ADM}=90^0\)

nên AEDM là tứ giác nội tiếp

b: Xét ΔMAB vuông tại A có AD là đường cao

nên \(MD\cdot MB=MA^2\)

c: Gọi F là giao điểm của BC và MA

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)FB tại C

=>ΔACF vuông tại C

Ta có: CH\(\perp\)AB

MA\(\perp\)AB

Do đó: CH//MA

Gọi I là giao điểm của CH và MB

Ta có: \(\widehat{MAC}+\widehat{MFC}=90^0\)(ΔACF vuông tại C)

\(\widehat{MCA}+\widehat{MCF}=\widehat{FCA}=90^0\)

mà \(\widehat{MAC}=\widehat{MCA}\)(ΔMAC cân tại M)

nên \(\widehat{MFC}=\widehat{MCF}\)

=>MF=MC

mà MA=MC

nên MA=MF(3)

Xét ΔBMA có IH//MA

nên \(\dfrac{IH}{MA}=\dfrac{BI}{BM}\left(4\right)\)

Xét ΔBMF có CI//MF

nên \(\dfrac{CI}{MF}=\dfrac{BI}{BM}\left(5\right)\)

Từ (3),(4),(5) suy ra IC=IH

=>I là trung điểm của CH

=>MB đi qua trung điểm của CH

a)

Theo tính chất 2 tiếp tuyến cắt nhau (MAMA, MCMC) thì MA=MCMA=MC

Mà OA=OC=ROA=OC=R

⇒MO⇒MO là đường trung trực của ACAC

⇒MO⊥AC⇒MEAˆ=900(1)⇒MO⊥AC⇒MEA^=900(1)

Lại có:

ADBˆ=900ADB^=900 (góc nt chắn nửa đường tròn)

⇒MDAˆ=1800−ADBˆ=900(2)⇒MDA^=1800−ADB^=900(2)

Từ (1);(2) ⇒MEAˆ=MDAˆ⇒MEA^=MDA^. Mà 2 góc này cùng nhìn cạnh MAMA nên tứ giác AMDEAMDE là tgnt.

2 tháng 5 2019

cảm ơn bn

nhưng mik còn câu c thôi

mà bn chép mạng cx chọn cái chép đi chứ, chép thừa r

 ta có hình sau :1590160365_lazi_5ec7ebed37692_lazi.jpeg

1590160386_lazi_5ec7ec0208d3d_lazi.jpeg

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH

a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường  tròn) ⇒ˆADM=900⇒ADM^=900 (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC

⇒ˆAEM=900⇒AEM^=900 (2). 

Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.

b)  Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)

Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).

Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^

c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).

Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).

Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.

5 tháng 3 2023

Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.

Bước 1: Chứng minh AD/AC + AM/AN = 3.

Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:

 

$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$

Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$

Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.

Thay vào phương trình trên, ta được:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$

Tương đương với:

 

$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$

Từ đó suy ra:

 

$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$

Do đó:

 

$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt