Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé :
1.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\)
\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC
Tương tự DMOB nội tiếp đường tròn đường kính OD
2 . Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)
Tương tự DM = DB , OD là phân giác ^BOM
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)
\(\Rightarrow OC\perp OD\)
Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)
Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)
3.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CO\perp AM=E\) là trung điểm AM
Tương tự \(OD\perp BM=F\) là trung điểm BM
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)
Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)
\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM
\(\Rightarrow EFNO\) nội tiếp
\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)
Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO )
\(\Rightarrow EFON\) là hình thang cân
a) Tứ giác EFMK có góc E và góc M vuông (vì đều bằng các góc chắn nửa đường tròn) nên là tứ giác nội tiếp.
b) Ta có
\widehat{HAF}=\widehat{ABE}HAF=ABE (Góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung);
\widehat{EAM}=\widehat{EBM}EAM=EBM ( góc nội tiếp cùng chắn cung \stackrel\frown{EM}EM⌢)
mà \widehat{HAF}=\widehat{EAM}HAF=EAM (AEAE là tia phân giác góc IAM)
nên \widehat{ABE}=\widehat{EBM}ABE=EBM, hay BE là tia phân giác góc ABM.
Mặt khác BE cũng là đường cao trong tam giác ABF nên tam giác ABF cân tại B.
c) Tam giác HAK có AE vừa là phân giác vừa là đường cao nên nó cân tại A. Suy ra E là trung điểm HK.
Tứ giác HFKA có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.
d) HFKA là hình thoi nên FK // HA, suy ra tứ giác IFKA là hình thang.
Để IFKA nội tiếp được đường tròn thì nó phải là hình thang cân, hay tam giác MIA vuông cân tại M.
Khi đó, \widehat{IAM}=45^{\circ}\Rightarrow\widehat{MAB}=45^{\circ},IAM=45∘⇒MAB=45∘, tam giác MAB vuông cân tại M. Do đó M là điểm chính giữa cung nửa đường tròn AB.
1. Ta có : ÐAMB = 900 ( nội tiếp chắn nửa đường tròn )
=> ÐKMF = 900 (vì là hai góc kề bù).
ÐAEB = 900 ( nội tiếp chắn nửa đường tròn )
=> ÐKEF = 900 (vì là hai góc kề bù).
=> ÐKMF + ÐKEF = 1800 . Mà ÐKMF và ÐKEF là hai góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp.
1. Ta có ÐIAB = 900 ( vì AI là tiếp tuyến ) => DAIB vuông tại A có AM ^ IB ( theo trên).
Áp dụng hệ thức giữa cạnh và đường cao => AI2 = IM . IB.
2. Theo giả thiết AE là tia phân giác góc IAM => ÐIAE = ÐMAE => AE = ME (lí do ……)
=> ÐABE =ÐMBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc ABF. (1)
Theo trên ta có ÐAEB = 900 => BE ^ AF hay BE là đường cao của tam giác ABF (2).
Từ (1) và (2) => BAF là tam giác cân. tại B .
3. BAF là tam giác cân. tại B có BE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của AF. (3)
Từ BE ^ AF => AF ^ HK (4), theo trên AE là tia phân giác góc IAM hay AE là tia phân giác ÐHAK (5)
Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của HK. (6).
Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường).
4. (HD). Theo trên AKFH là hình thoi => HA // FK hay IA // FK => tứ giác AKFI là hình thang.
Để tứ giác AKFI nội tiếp được một đường tròn thì AKFI phải là hình thang cân.
AKFI là hình thang cân khi M là trung điểm của cung AB.
Thật vậy: M là trung điểm của cung AB => ÐABM = ÐMAI = 450 (t/c góc nội tiếp ). (7)
Tam giác ABI vuông tại A có ÐABI = 450 => ÐAIB = 450 .(8)
Từ (7) và (8) => ÐIAK = ÐAIF = 450 => AKFI là hình thang cân (hình thang có hai góc đáy bằng nhau).
Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp được một đường tròn.
Lưu ý – kí hiệu: Ð có nghĩa là góc.
1: Xét (O) có
CA là tiếp tuyến có A là tiếp điểm
CM là tiếp tuyến có M là tiếp điểm
Do đó: OC là tia phân giác của \(\widehat{MOA}\)
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DM là tiếp tuyến có M là tiếp điểm
Do đó: OD là tia phân giác của \(\widehat{MOB}\)
Ta có: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)
\(=\left(\widehat{MOA}+\widehat{MOB}\right)\cdot\dfrac{1}{2}\)
\(=180^0\cdot\dfrac{1}{2}=90^0\)
hay ΔCOD vuông tại O
Xét (O) có
CA là tiếp tuyến có A là tiếp điểm
CM là tiếp tuyến có M là tiếp điểm
Do đó: CM=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DM là tiếp tuyến có M là tiếp điểm
Do đó: DB=DM
\(AC\cdot BD=CM\cdot MD=OM^2\) không phụ thuộc vào vị trí của M