K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên ^MIB=90o^CIM=90o.

Vậy nên tứ giác CHMI nội tiếp.

^HIM=^HCM.

Tam giác ACM cân tại C nên ^HCM=^HCA.

Mà ^HCA=^HBC (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên ^HBC=^JIB.

Tóm lại : ^HIM=^JIB^HIM+^MIJ=^JIB+^MIJ

^HIJ=^MIB=90o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB

17 tháng 11 2021

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên \widehat{MIB}=90^o\Rightarrow\widehat{CIM}=90^oMIB=90oCIM=90o.

Vậy nên tứ giác CHMI nội tiếp.

\Rightarrow\widehat{HIM}=\widehat{HCM}HIM=HCM.

Tam giác ACM cân tại C nên \widehat{HCM}=\widehat{HCA}HCM=HCA.

Mà \widehat{HCA}=\widehat{HBC}HCA=HBC (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên \widehat{HBC}=\widehat{JIB}HBC=JIB.

suy ra : \widehat{HIM}=\widehat{JIB}\Rightarrow\widehat{HIM}+\widehat{MIJ}=\widehat{JIB}+\widehat{MIJ}HIM=JIBHIM+MIJ=JIB+MIJ

\Rightarrow\widehat{HIJ}=\widehat{MIB}=90^o.HIJ=MIB=90o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
26 tháng 5 2021

b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.

Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.

Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)

Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).

Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).

 

26 tháng 5 2021

undefined

c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).

Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).

Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).

Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).

Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).

Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).

Vậy ta có đpcm.

29 tháng 4 2018

HS tự chứng minh

13 tháng 11 2019

xdbscasfv  jzdr6535943465gthzgh