\(n\in N\) Xét đa thức \(P\left(x\right)\in R\left(x\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2019

ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)

\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)

19 tháng 10 2019

tan chứ đâu phải cos đâu bạn

Tham khảo:

undefined

9 tháng 7 2019

4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B

NV
19 tháng 6 2019

\(sin\left(x+\frac{\pi}{6}\right)=1\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{3}+k2\pi\)

NV
19 tháng 6 2019

\(sin\left(\frac{2x}{3}-\frac{\pi}{3}\right)=0\Rightarrow\frac{2x}{3}-\frac{\pi}{3}=k\pi\Rightarrow\frac{2x}{3}=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{2}+\frac{k3\pi}{2}\)

25 tháng 5 2017

b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.

25 tháng 5 2017

c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.

NV
31 tháng 3 2019

Một cách dựa vào hàm số:

Đặt \(VT=f\left(x\right)\)

- Nếu 2 trong 3 số a, b, c bằng nhau hoặc một trong 3 số bằng 0 thì pt hiển nhiên có nghiệm

- Nếu không có bất cứ cặp nào bằng nhau và đều khác 0, do tính đối xứng của \(f\left(x\right)\) , không làm mất tính tổng quát, giả sử \(a>b>c\) ta có:

\(f\left(a\right)=a\left(a-b\right)\left(a-c\right)\)

Do \(\left(a-b\right)\left(a-c\right)>0\Rightarrow f\left(a\right)\) cùng dấu với \(a\) \(\Rightarrow a.f\left(a\right)>0\) (1)

\(f\left(b\right)=b\left(b-c\right)\left(b-a\right)\)

Do \(\left(b-c\right)\left(b-a\right)< 0\Rightarrow b.f\left(b\right)< 0\) (2)

\(f\left(c\right)=c\left(c-a\right)\left(c-b\right)\)

Do \(\left(c-a\right)\left(c-b\right)< 0\Rightarrow c.f\left(c\right)>0\) (3)

- Nếu a, c cùng dấu \(\Rightarrow a;b;c\) cùng dấu \(\Rightarrow ab>0\)

Nhân vế với vế của (1) và (2): \(a.b.f\left(a\right).f\left(b\right)< 0\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;b\right)\)

- Nếu \(a,\) c trái dấu \(\Rightarrow ac< 0\) nhân vế với vế của (1) và (3):

\(ac.f\left(a\right).f\left(c\right)>0\Rightarrow f\left(a\right).f\left(c\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;c\right)\)

Vậy pt đã cho luôn luôn có nghiệm

28 tháng 4 2019

nhở a,b,c<0 s pn ! lm lại nhé

4 tháng 4 2017

Vì lim = 0 nên || có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Mặt khác, ta có |un -1| < = || với mọi n. Nếu |un -1| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là lim (un -1) = 0. Do đó lim un = 1.



26 tháng 5 2017

\(lim\dfrac{1}{n^3}=0\)\(\left|u_n-1\right|< \dfrac{1}{n^3}\) nên \(lim\left|u_n-1\right|=0\).
Suy ra: \(lim\left(u_n-1\right)=0\)\(\Leftrightarrow limu_n=1\).