Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) với a là số nguyên thì phân số a/74 khi n ko thuộc bội hay ước của 74
2) 60/108 rút gọn đi thì được phân số 15/27 ,sau đó ta nhân cả tử và mẫu với 5 được a/b = 75/135
vậy a/b = 75/135
còn câu 3 thì mình bó tay chấm com
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản
=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)
=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)
b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)
1/
a/ 11abc = 10925 + 75 + abc = 25.437 + (75 + abc)
Để 11abc chia hết cho 437 ta có 10925 = 25.437 chia hết cho 437 => 75 + abc phải chia hết cho 437
=> (75 + abc) = {437; 2.437=874} => abc = {362; 799}
b/ làm tương tự
2/
a/ \(\frac{6n+1}{5n+1}\) là phân số tối giản khi 6n+1 và 5n+1 có USC là 1
Gọi d là USC của 6n+1 và 5n+1
=> 6n+1 chia hết cho d => 5.(6n+1)=30n+5 chia hết cho d
5n+1 chai hết cho d => 6.(5n+1) =30n+6 chia hết cho d
=> (30n+6) - (30n+5) = 1 chia hết cho d => d=1
=> \(\frac{6n+1}{5n+1}\) là phân số tối giản
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Vì n thuộc Z => n có dạng \(\frac{c}{b}\)(c \(⋮\) b)
=> n + \(\frac{a}{b}\)= \(\frac{c}{b}+\frac{a}{b}=\frac{c+a}{b}\)
vì c\(⋮\) b , a \(⋮\) b (\(\frac{a}{b}\) là phân số tối giản )
=> a+c \(⋮\) b
=> \(\frac{a+c}{b}\) là số tối giản
=> n + \(\frac{a}{b}\) là phân số tối giản