\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x\sqrt{x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2022

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(2x+\sqrt{x}-1\right)\cdot\left(\dfrac{1}{1-x}+\dfrac{\sqrt{x}}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\dfrac{1+x\sqrt{x}+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\dfrac{\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: Khi x=17-12 căn 2 thì \(A=\dfrac{17-12\sqrt{2}+3-2\sqrt{2}+1}{3-2\sqrt{2}}=7\)

16 tháng 11 2022

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(2x+\sqrt{x}-1\right)\cdot\left(\dfrac{1}{1-x}+\dfrac{\sqrt{x}}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\dfrac{1+x\sqrt{x}+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\dfrac{\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: Khi x=17-12 căn 2 thì \(A=\dfrac{17-12\sqrt{2}+3-2\sqrt{2}+1}{3-2\sqrt{2}}=7\)

NV
9 tháng 12 2018

ĐKXĐ: \(x>0;x\ne1\)

\(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}=\dfrac{x-1+x+\sqrt{x}}{1-x}+\dfrac{x\sqrt{x}-\sqrt{x}+x\sqrt{x}+x}{1+x\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{\left(2\sqrt{x}-1\right)\sqrt{x}}{x-\sqrt{x}+1}=\left(2\sqrt{x}-1\right)\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

Vậy \(A=\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\right):\left(\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

b/ Dễ dàng nhận ra \(A>0\)\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}}=\sqrt{17-12\sqrt{2}}-1+\dfrac{1}{\sqrt{17-12\sqrt{2}}}\)

\(A=\sqrt{17-12\sqrt{2}}-1+\sqrt{17+12\sqrt{2}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-1+\sqrt{\left(3+2\sqrt{2}\right)^2}\)

\(\Rightarrow A=3-2\sqrt{2}+3+2\sqrt{2}-1=6-1=5\)

c/ Ta có \(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}-1=1\) (dấu "=" không xảy ra)

\(A>0\Rightarrow\sqrt{A}>1\Rightarrow\sqrt{A}-1>0\)

Ta có \(A-\sqrt{A}=\sqrt{A}\left(\sqrt{A}-1\right)>0\) do \(\left\{{}\begin{matrix}\sqrt{A}>0\\\sqrt{A}-1>0\end{matrix}\right.\)

\(\Rightarrow A>\sqrt{A}\) \(\forall x\)

a: \(B=\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\)

\(=\left(2x+\sqrt{x}-1\right)\left(\dfrac{-1}{x-1}+\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\left(\dfrac{-x+\sqrt{x}-1+x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=-\dfrac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(A=\dfrac{-\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\dfrac{-x+\sqrt{x}-1}{\sqrt{x}}\)

b: Khi \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) thì 

\(A=\dfrac{-17+12\sqrt{2}+3-2\sqrt{2}-1}{3-2\sqrt{2}}=-5\)

c: \(A=\dfrac{-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{3}{4}}{\sqrt{x}}< 0\)

=>căn A không tồn tại 

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

\(A=\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)

\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}}{2x-1}-1\)

\(=\dfrac{2x\sqrt{2}+2\sqrt{2x}-1+2x-2x+1}{2x-1}=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}\)

\(B=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=1+\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{2x-1}\)

\(=1+\dfrac{-2\sqrt{x}-1-2x}{2x-1}\)

\(=\dfrac{2x-1-2\sqrt{x}-1-2x}{2x-1}=\dfrac{-2-2\sqrt{x}}{2x-1}\)

\(P=A:B=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}:\dfrac{-2\sqrt{x}-2}{2x-1}\)

\(=\dfrac{2\sqrt{x}\left(x+\sqrt{2}\right)}{2x-1}\cdot\dfrac{2x-1}{-2\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(x+\sqrt{2}\right)}{\sqrt{x}+1}\)

b: Thay \(\sqrt{x}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\) vào P, ta được:

\(P=\left[-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\left(\dfrac{3+2\sqrt{2}}{2}+\sqrt{2}\right)\right]:\left[\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}+1\right]\)

\(=\left[\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\dfrac{3+4\sqrt{2}}{2}\right]:\left[\dfrac{2+\sqrt{2}+2}{2}\right]\)

\(=\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{4}\cdot\dfrac{2}{4+\sqrt{2}}\)

\(=\dfrac{-\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{2\cdot\left(2\sqrt{2}+1\right)}=\dfrac{-\left(4\sqrt{2}+3\right)}{3\cdot\left(3+\sqrt{2}\right)}\)

 

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{-\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x\sqrt{x}+x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\dfrac{-2x^2+x\sqrt{x}-2\sqrt{x}+1+2x^2-x\sqrt{x}-2x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-2x-\sqrt{x}+1}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{-\sqrt{x}\left(2x+\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

b: Thay \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) vào A, ta được:

\(A=\dfrac{17-12\sqrt{2}-\sqrt{2}+1+1}{3-2\sqrt{2}}=\dfrac{19-13\sqrt{2}}{3-2\sqrt{2}}=5-\sqrt{2}\)