Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
Bất đẳng thức cần chứng minh tương đương với \(n>\left(1+\frac{1}{n}\right)^n.\)
Ta chứng minh bằng quy nạp theo n. Với \(n=3\): ta có vế trái bằng \(3^4=81\), vế phải \(4^3=64\). Vậy bất đẳng thức đúng với \(n=3\).
Giả sử đúng đến \(n\), tức là ta đã có \(n>\left(1+\frac{1}{n}\right)^n.\) Khi đó
\(\left(1+\frac{1}{n+1}\right)^{n+1}<\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{n}\right)\cdot\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n}\right)\cdot n=n+1.\)
Do đó mệnh đề đúng với n+1.
Theo nguyên lý quy nạp đúng với mọi n.
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
Tl
Bài này cũng hơi khó
#Kirito