Δ A B CΔABCB C = a ; A B - A C = b ( a > 0 ;...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

a = 2;b= (-2);c= 3

Thay : a+b+c=2+(-2)+3

                 .     =[2+(-2)]+3

                       =0+3=3

B)vì a và b là 2 số đối nhau nên ta có :

a =2;b= (-2) và là 2số đối nhau vì

|-2|=2

19 tháng 2 2019

abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c thuộc N*

19 tháng 2 2019

Giả sử : Cả 3 số a,b,c đều âm , suy ra abc < 0 ( trái gt )

=> Có ít nhất một số dương trong 3 số a,b,c

Do a,b,c bình đẳng, không mất tính tổng quát :

Giả sử : \(a>0\), mà \(abc>0,\) suy ra \(bc>0\)

\(TH1:b< 0;c< 0\), suy ra : \(b+c< 0\)

Mà : \(a+b+c>0\left(gt\right)\) \(\Rightarrow b+c>-a\)

Do : \(b+c< 0\), suy ra : \(\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow ab+ac+bc< -b^2-2bc-c^2+bc\)

\(\Rightarrow ab+bc+ac< -b^2-bc-c^2=-\left(b^2+bc+c^2\right)\)

Do : \(b^2+c^2\ge0;bc>0\)

\(\Rightarrow b^2+bc+c^2>0\)

\(\Rightarrow-\left(b^2+bc+c^2\right)< 0\)

Mà : \(ab+bc+ac< -\left(b^2+bc+c^2\right)\)

\(\Rightarrow ab+bc+ac< -\left(b^2+bc+c^2\right)< 0\)

\(\Rightarrow ab+bc+ac< 0\)( trái giả thiết : ab + bc + ac > 0 )

Suy ra : b <0, c< 0 ( vô lý )

\(\Rightarrow b,c>0\Rightarrow a,b,c>0\Rightarrow a,b,c\inℕ^∗\left(đpcm\right)\)

23 tháng 2 2018

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a\times d}{b\times d}>\frac{c\times b}{d\times b}\) (quy đồng mẫu số) Vì do mẫu giống nhau nên tử lớn hơn sẽ lớn hơn \(\Rightarrow a\times d>c\times b\)

23 tháng 2 2018

Câu này lớp mấy đó ?

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2

                                      

                                       
 

27 tháng 12 2015

a. \(M=a.\left(b-c\right)+b.\left(b-c\right)=\left(b-c\right).\left(a+b\right)=\left(b-c\right).0=0\)

 

 

 

 

2 tháng 2 2017

Ta có

ab-ac+bc=c^2-1

suy ra ab-ac+bc-c^2+1=0

         a.(b-c)+bc-cc=-1

         a.(b-c)+c.(b-c)=-1

         (a+c).(b-c)=-1

  Suy ra ta có 2 trường hợp:

a+c=-1 thì b-c=1 (1)

a+c=1 thì b-c=-1  (2)

Từ (1) và (2) suy ra b-c=-(a+c)

                             b-c=-a-c

                             b=-a

     Vì a và b đoi nhau nen a/b=-1

              Vậy a/b=-1

       Nhớ k cho mình nha,mình giai rõ ràng và nhanh nhất đó

2 tháng 2 2017

tìm trên mạng có hết đó bạn , ko cần hỏi đâu