Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(-\frac{1}{54}-\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{79.81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{79}-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{40}{27}\)
\(=-\frac{3}{2}\)
Câu 2:
\(a^2+b^2+c^2+d^2+e^2=\left(a+b+c+d+e\right)^2-2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)\)
Mà \(2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)⋮2\)
\(\Rightarrow\left(a+b+c+d+e\right)^2⋮2\)
\(\Rightarrow a+b+c+d+e⋮2\)
Do \(a,b,c,d,e\) nguyên dương \(\Rightarrow a+b+c+d+e>2\Rightarrow a+b+c+d+e\) là hợp số
Câu 3:
- Chiều thuận: \(3a+2b⋮17\Rightarrow10a+b⋮17\)
Ta có \(\left\{{}\begin{matrix}17a⋮17\\3a+2b⋮17\end{matrix}\right.\) \(\Rightarrow17a+3a+2b⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\), mà 2 và 17 nguyên tố cùng nhau \(\Rightarrow10a+b⋮17\)
- Chiều nghịch: \(10a+b⋮17\Rightarrow3a+2b⋮17\)
\(10a+b⋮17\Rightarrow2\left(10a+b\right)⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
Mà \(17a⋮17\Rightarrow3a+2b⋮17\) (đpcm)
Không mất tính tổng quát giả sử \(a\ge b\)
Vì \(a^b=b^c\Rightarrow b\le c\)
Vì \(b^c=c^d\Rightarrow c\ge d\)
Vì \(c^d=d^e\Rightarrow d\le e\)
Vì \(d^e=e^a\Rightarrow a\ge a\)
Vì \(e^a=a^b\Rightarrow a\le b\)
Trái với điều giả sử nên xảy ra khi \(a=b\)
Khi đó suy ra \(a=b=c=d=e\) (ĐPCM)
a)Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác,theo tính chất dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+b+c+d}{b+d+c+e}=\frac{a+b+c+d}{b+c+d+e}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^{\left(đpcm\: \right)}\)
b) Xin phép sửa đề! =) CMR: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}^{\left(đpcm\right)}\)
P/s: Bạn đánh sai đề hoài như thế sẽ ảnh hưởng đến việc giải bài của các bạn khác gây khó khăn cho họ. Như vậy,họ sẽ không giúp bạn nữa. Rút kinh nghiệm lần sau đánh đề cẩn thận hơn nhé!
a) Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Leftrightarrow\frac{abcd}{bdce}=\frac{a}{2}\) (1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+c+b+d}{b+d+c+e}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)\)( đpcm )
b) Mình sửa lại tí nha: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{\left(abcd\right)^4}{\left(bdce\right)^4}=\frac{a}{e}\)(1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+c^4+b^4+d^4}{b^4+d^4+c^4+e^4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)( đpcm )
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học.
Giả sử a>b => b>c=>c>d=>d>e=> e>a
Mà a>b>c>d>e => vô lý
Nếu a<b thì b<c;c<d;d<e ; e<a
Mà a<b<c<d<e -> vô lý
=> a=b