Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
bài B tương tự
Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)
làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có
\(\frac{1}{k^3}\)< \(\frac{1}{k^3-k}\)= \(\frac{1}{k\left(k^2-1\right)}\)= \(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)
do đó
A < \(\frac{1}{2^3-2}\)+ \(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)= \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
đặt C = \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng
\(\frac{1}{\left(n-1\right)n}\)- \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)- \(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{4}\)- \(\frac{1}{2n\left(n+1\right)}\)< \(\frac{1}{4}\)
vậy ta có điều phải chứng minh
Ta có:
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=1\)
\(\Leftrightarrow ab+bc+ca\le\frac{1}{3}< \frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}\)
\(< 1\)
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)
Ta có :
\(\frac{1}{n+1}>\frac{1}{n+n}=\frac{1}{2n}\)
\(\frac{1}{n+2}>\frac{1}{n+n}=\frac{1}{2n}\)
\(\frac{1}{n+3}>\frac{1}{n+n}=\frac{1}{2n}\)
......................
\(\frac{1}{n+n}=\frac{1}{n+n}=\frac{1}{2n}\)
Cộng vế với vế ta được :
\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}\)( có n số \(\frac{1}{2n}\) )
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}\) ( đpcm )