K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

\(n^6-n^2=n^2\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2+1\right)=n^2\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n^2\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n^2\left(n-1\right)\left(n+1\right)\)

\(=n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)\)

Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp

=>\(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\) 

Mà n(n-1)(n-2) và n(n+1)(n+2) là tích 3 số nguyên liên tiếp

=>n(n-1)(n-2) chia hết cho 2 và 3 ; n(n+1)(n+2) chia hết cho 2 và 3

=> \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 4 và 3

Do đó \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮3.4.5=60\) (1)

- Nếu n lẻ thì n-1,n+1 chẵn hay (n-1)(n+1) chia hết cho 4

=>\(5n^2\left(n-1\right)\left(n+1\right)⋮20\)

Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)

=>\(5n^2\left(n-1\right)\left(n+1\right)⋮60\)

- Nếu n chẵn thì \(n^2⋮4\)

\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮20\)

Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)

\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)

Từ 2 trường hợp trên => \(5n^2\left(n-1\right)\left(n+1\right)⋮60\) (2)

Từ (1) và (2) => \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\) (đpcm)

10 tháng 9 2017

\(a.\left(x^3-16x\right)=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)

Uầy lười lm waa

10 tháng 9 2017

. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

28 tháng 8 2017

ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36=24n⋮24\)

\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)

28 tháng 8 2017

\(\left(n+6\right)^2-\left(n-6\right)^2\\ =\left(n+6+n-6\right).\left[n+6-\left(n-6\right)\right]\\ =2n.\left(n+6-n+6\right)\\ =2n.12\\ =24n⋮24\)

Vậy ...

28 tháng 8 2017

Ta có :

\(\left(n+6\right)^2-\left(n-6\right)^2\)  = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)

\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)

\(=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=12n+12n\)

\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và  \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24  (đpcm)

19 tháng 8 2019

Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!