K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

câu 5 :vì đồ thị của hàm số y =ax (a khác 0) là 1 đường thẵng đi qua góc toạ độ nên 3 điểm o,m,m là 1 đường thẳng ,k nha

8 tháng 3 2017

còn các câu 1;2;3;4 ai làm đc tớ sẽ*** 

27 tháng 9 2019

1) 3^1994+4^1993-3^1992

  = 3^1992.(9+3-1)=3^1992.11 chia hết cho 11

=> 3^1994+3^1993-3^1992 chia hết cho 11

27 tháng 9 2019

Có ai bt bài 2 ko z 

CÂU B là sai các bạn đừng giải, mình xin lỗi

7 tháng 7 2019

a)\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\) 

 \(=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)\) 

 \(=3^{24}.45⋮45\) 

\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)

  

NV
10 tháng 4 2019

a/ Không chia hết cho 3 mới đung

\(\left\{{}\begin{matrix}6^{2n+1}⋮3\\5^{n+2}⋮̸3\end{matrix}\right.\) \(\Rightarrow6^{2n+1}+5^{n+2}⋮̸3\)

b/

\(2^{100}=2.2^{99}=2.\left(8\right)^{33}\)

\(8\equiv-1\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)^{33}\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)\left(mod9\right)\)

\(\Rightarrow2.8^{33}\equiv-2\left(mod9\right)\Rightarrow2^{100}\) chia 9 dư \(9-2=7\)

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

\(1024\equiv-1\left(mod25\right)\Rightarrow1024^{10}\equiv\left(-1\right)^{10}\left(mod25\right)\Rightarrow1024^{10}\equiv1\left(mod25\right)\)

Vậy \(2^{100}\) chia 25 dư 1

10 tháng 4 2019

ủa sai đề à

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

c: \(3^{200}=9^{100}\)

\(2^{300}=8^{100}\)

mà 9>8

nên \(3^{200}>2^{300}\)

d: \(71^{50}=5041^{25}\)

\(37^{75}=50653^{25}\)

mà 5041<50653

nên \(71^{50}< 37^{75}\)