K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KK
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NP
0
TA
16 tháng 12 2023
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
3 tháng 2 2016
so thu nhat=136529
so thu 3 : 409587
so thu 2 : 273508
so thu 4; 546116
................toi so thu 7 la het
Em thử quy nạp nhé!
Với n = 1 thì mệnh đề đúng
Giả sử đúng với n = k thuộc N* tức là \(16^k-15k-1⋮225\) (giả thiết quy nạp)
Cần chứng minh nó đúng với n = k + 1. Tức là chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)
\(\Leftrightarrow16^k.16-15k-16⋮225\)
\(\Leftrightarrow16\left(16^k-15k-1\right)+15.15k⋮225\) (luôn đúng theo giả thiết quy nạp)
Ta có đpcm
n nguyên dương nên \(n\ge1\)
+) Xét n = 1 thì \(16^n-15n-1=0⋮225\)
Như vậy thì khẳng định đúng với n = 1
+) Giả sử khẳng định đúng với n = t tức là \(16^t-15t-1⋮225\)
Ta chứng minh khẳng định đúng với n = t + 1
Thật vậy: \(16^{t+1}-15\left(t+1\right)-1=16^t\left(15+1\right)-15t-15-1\)
\(=\left(16^t-15t-1\right)+15\left(16^t-1\right)\)
Ta có: \(16^t-1⋮16-1=15\)suy ra \(15\left(16^t-1\right)⋮225\)
Mà \(\left(16^t-15t-1\right)⋮225\)(Theo giả sử) nên \(16^{t+1}-15\left(t+1\right)-1⋮225\)
Vậy \(16^n-15n-1⋮225\forall n\inℕ^∗\)