K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

                                                           Bài giải

Đặt \(A=\frac{n^2+18}{n-1}=\frac{n\left(n-1\right)+n+18}{n-1}=\frac{n\left(n-1\right)+\left(n-1\right)+19}{n-1}=\frac{\left(n+1\right)\left(n-1\right)+19}{n-1}\)

\(=n+1+\frac{19}{n-1}\)

\(A\in Z\) khi \(19\text{ }⋮\text{ }n-1\text{ }\Rightarrow\text{ }n-1\inƯ\left(19\right)=\left\{1\text{ ; }19\right\}\)

                                              \(\Rightarrow\text{ }n\in\left\{2\text{ ; }20\right\}\)

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0

Để \(n^2+2n+7⋮n+2\)

\(\Rightarrow n\left(n+2\right)+7⋮n+2\)

Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)

Để \(n^2+1⋮n-1\)

=> \(n^2-1+2⋮n-1\)

\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)

\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)

=> (n - 1)(n + 1) + 2\(⋮n-1\)

Vì (n - 1)(n + 1) \(⋮n-1\)

=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)

Để \(n^2+2n+6⋮n+4\)

=> \(n^2+4n-2n-8+14⋮n+4\)

=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)

=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)

Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)

=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)

Để n2 + n + 1 \(⋮n+1\)

 => \(n\left(n+1\right)+1⋮n+1\)

Vì \(n\left(n+1\right)⋮n+1\)

=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)