K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

TH1: Nếu n chẵn \(\Rightarrow n=2k\left(k\inℕ\right)\)

\(\Rightarrow2k.\left(2k+2019\right)⋮2\)

hay \(n\left(n+2019\right)⋮2\)

TH2: Nếu n lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow\left(2k+1\right).\left(2k+1+2019\right)=\left(2k+1\right).\left(2k+2020\right)\)

\(=2.\left(2k+1\right).\left(k+1010\right)⋮2\)

hay \(n\left(n+2019\right)⋮2\)

Vậy \(n\left(n+2019\right)\)luôn chia hết cho 2

7 tháng 10 2019

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)

17 tháng 12 2016

n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)

Trường hợp 1: n = 3k

Thay n = 3k vào n + 2019, ta có:

n + 2019 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2019)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)

Trường hợp 2: n = 3k + 1

Thay n = 3k + 1 vào n + 2018, ta có:

n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2018)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)

Trường hợp 3: n = 3k + 2

Thay n = 3k + 2 vào n + 2017, ta có:

n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2017)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)

Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N

Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)

11 tháng 4 2017

ngu cau nay de vai loz

9 tháng 8 2018

với n=2k thì  2k(2k+5)  chia hết cho 2  ( số chẵn)_

với n = 2k +1 thì 2k+1(2k+1+5) = 2k+1(2k+6) chia hết cho 2 (số chẵn) 

câu b làm tương tự nha bn

16 tháng 10 2016

A=n^2+n+1=n(n+1)+1 

có n(n+1) là tích hai số tự nhiên liên tiếp do vậy luôn chẵn, và tân cùng không bao giờ bằng 4 vậy A luôn lẻ, tận cùng ko bao giờ bằng 5=> không chia 2 =>ko chia hết cho 4, 5

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4