Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)
Trường hợp 1: n = 3k
Thay n = 3k vào n + 2019, ta có:
n + 2019 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2019)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)
Trường hợp 2: n = 3k + 1
Thay n = 3k + 1 vào n + 2018, ta có:
n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2018)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)
Trường hợp 3: n = 3k + 2
Thay n = 3k + 2 vào n + 2017, ta có:
n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2017)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)
Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N
Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)
với n=2k thì 2k(2k+5) chia hết cho 2 ( số chẵn)_
với n = 2k +1 thì 2k+1(2k+1+5) = 2k+1(2k+6) chia hết cho 2 (số chẵn)
câu b làm tương tự nha bn
A=n^2+n+1=n(n+1)+1
có n(n+1) là tích hai số tự nhiên liên tiếp do vậy luôn chẵn, và tân cùng không bao giờ bằng 4 vậy A luôn lẻ, tận cùng ko bao giờ bằng 5=> không chia 2 =>ko chia hết cho 4, 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
TH1: Nếu n chẵn \(\Rightarrow n=2k\left(k\inℕ\right)\)
\(\Rightarrow2k.\left(2k+2019\right)⋮2\)
hay \(n\left(n+2019\right)⋮2\)
TH2: Nếu n lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow\left(2k+1\right).\left(2k+1+2019\right)=\left(2k+1\right).\left(2k+2020\right)\)
\(=2.\left(2k+1\right).\left(k+1010\right)⋮2\)
hay \(n\left(n+2019\right)⋮2\)
Vậy \(n\left(n+2019\right)\)luôn chia hết cho 2