Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
a: \(A=n\left(n-1\right)\left(n+1\right)\cdot n\)
TH1: n=2k
n(n-1)(n+1) chia hết cho 6 với mọi n
=>A chia hết cho 12
TH2: n=2k+1
\(A=\left(2k+1\right)\cdot\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\)
\(=4k\left(k+1\right)\left(2k+1\right)\left(2k+1\right)⋮4\)
mà 2k(2k+1)(2k+2) chia hết cho 6
nen A chia hết cho 12
d: Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(1\right)\)
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\left(2\right)\)
Từ (1) và (2) suy ra A chia hết cho 30
Bài làm
a) Ta có: n3− 8n2 + 2n ⋮ ( n2 + 1 )
⇔ ( n3 + n ) − (8n2 + 8 ) + n + 8 ⋮ n2 + 1
⇔ n( n2 + 1 ) − 8( n2+1 ) + n + 8 ⋮ n2 + 1
⇒ n + 8 ⋮ n2 + 1⇒ ( n − 8 )( n + 8 ) ⋮ n2 + 1
⇔ ( n2 + 1 ) − 65 ⋮ n2 + 1
⇒ 65 ⋮ n2 + 1 mà dễ dàng nhận thấy n2 + 1 ≥ 1 nên n2 + 1 ϵ 1 ; 5 ; 13 ; 65 hay n2 ϵ 0 ; 4 ; 12 ; 64n2 ϵ 0 ; 4 ; 12 ; 64
⇒n ϵ − 8 ; −2 ; 0 ; 2 ; 8
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị x = −8 ; 0 ; 2x = −8 ; 0 ; 2
# Chúc bạn học tốt #
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Đặt : A = n4 + 2n3 - n2 -2n
Ta có : A = n4 + 2n3 - n2 -2n
A= n3.(n + 2) - n ( n + 2)
A=(n3 - n) .( n + 2)
A= n( n2 -1).( n+ 2)
A= (n - 1).n.( n +1).( n +2)
Do : (n - 1).n.( n +1).( n +2) là 4 STN liên tiếp
=> (n - 1).n.( n +1).( n +2) chia hết cho 2,3,4
Hay A= (n - 1).n.( n +1).( n +2) chia hết cho 24
Có hằng đẳng thức: $a^n - b^n = (a-b)[a^{n-1}.b + a(n-2).b$² $+..+ b^(n-1)] = (a-b).p$
* $5^{2n} - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^{2n} - 5.2^n = 5.23.p$
$=> 5^{2n+1} - 5.2^n = 5.23p$ chia hết cho 23
* $2^{n+4} + 2^{n+1} = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n $
Vậy: $5^{2n+1} + 2^{n+4} + 2^{n+1} = 5^{2n+1} - 5.2^n + 23.2^n$ chia hết cho 23