\(M=\frac{n^5+1}{n^6+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Vì n5 + 1 < n6 + 1

\(M=\frac{n^5+1}{n^6+1}< \frac{n^5+1+\left(n-1\right)}{n^6+1+\left(n-1\right)}=\frac{n^5+n}{n^6+n}=\frac{n\left(n^4+1\right)}{n\left(n^5+1\right)}=\frac{n^4+1}{n^5+1}=N\)

=> M < N

10 tháng 2 2017

Ta có: \(N=\frac{n^4+1}{n^4+1}=1\) ( n > 1 )

\(M=\frac{n^5+1}{n^6+1}< 1\) ( do n > 1 )

\(\Rightarrow M< 1\) hay M < N

Vậy M < N

3 tháng 12 2015

\(1-A=\frac{n^6-n^5}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)

\(1-B=\frac{n^5-n^4}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)

Vì  n6 +1 < n6 + n

=> 1 -A > 1-B

Hay A < B

4 tháng 12 2015

 

\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)

\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)

Vì n6 + 1 < n6 +n 

=> 1 -A > 1-B

=> A < B

1 tháng 3 2018

thầy nói đề sai rồi mà 

phải là cm ƯCLN của a và b ko lớn hơn \(\sqrt{m+n}\)

8 tháng 5 2020

Gọi \(gcd\left(m;n\right)=d\Rightarrow m=ad;n=bd\left(a,b\inℕ^∗\right)\) và \(\left(m;n\right)=1\)

Ta có:

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{m^2+m+n^2+n}{mn}=\frac{\left(a^2+b^2\right)d+\left(a+b\right)}{abd}\)

\(\Rightarrow a+b⋮d\Rightarrow a+b\ge d\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy ta có đpcm

30 tháng 3 2020

Câu 2: n= 12

Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)

31 tháng 3 2020

Bạn có thể giả thích rõ hơn ko???

6 tháng 12 2016

a) A>1

b) B<1/2

6 tháng 12 2016

giải chi tiết ra cho mik với

25 tháng 6 2017

em chịu chị ơi

14 tháng 5 2017

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};......;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\)

Ta lại có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+.....+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}< 1\) (đpcm)

2 tháng 12 2017

a) Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\)A < 1 

b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)

vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)

\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)

2 tháng 12 2017

cảm ơn nha!