Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d\)là ước chung lớn nhất của 2n+1 và 6n+4(\(d\in\)N*)
Khi đó \(\hept{\begin{cases}2n+1⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\cdot\left(2n+1\right)⋮d\\6n+4⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Leftrightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=1\)(Vì \(d\in\)N*)
\(\Rightarrowđpcm\)
Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:
cho d là ƯCLN của chúng và d>1
ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d
suy ra:6n+5-(6n+3) chia hết cho d
vậy 2 chia hết cho d
mà các ƯC của 2 là :2 và 1
mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1
nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu
vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Chứng tỏ mọi số tự nhên n, các số sau đây đều là 2 số nguyên tố cùng nhau
a/n+2 và n+ 3
b/2n+3 và 3n+5
a)Gọi ƯCLN(n+2;n+3)=d
=>n+2 chia hết cho d; n+3 chia hết cho d
=>n+3-(n+2) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(n+2;n+3)=1
Vậy n+2; n+3 là ư số nguyên tố cùng nhau
b)Gọi ƯCLN(2n+3;3n+5)=a
=>2n+3 chia hết cho a; 3n+5 chia hết cho a
3(2n+3) chia hết cho a; 2(3n+5) chia hết cho a
6n+9 chia hết cho a; 6n+10 chia hết cho a
=>6n+10-(6n+9) chia hết cho a
=> 1 chia hết cho a hay a=1
Do đó, ƯCLN(2n+3;3n+5)=1
Vậy 2n+3;3n+5 là 2 số nguyên tố cùng nhau
a) gọi UCLN(n+2;n+3)=d
ta có :
n+2 chia hết cho d
n+3 chia hết cho d
=>(n+3)-(n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;n+3)=1
=>nguyên tố cùng nhau
b)
gọi UCLN(2n+3;3n+5)=d
ta có : 2n+3 chia hết cho d =>3(2n+3) chia hết cho d =>6n+9 chia hết cho d
3n+5 chia hết cho d => 2(3n+5) chia hết cho d =>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n+3;3n+5)=1
=>nguyên tố cùng nhau
=>ĐPCM
Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d
6n+5 chia hết d
= 3.(2n+1) chia hết d
6n+5 chia hết d
=6n+3 chia hết d
6n+5 chia hết d
(6n+5)-(6n+3) chia hết d
=2 chia hết d
d=1;2
Mà 6n+5 không chia hết 2; suy ra d=1
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
kick hộ mình nhé