Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2 + 2006 = a2 (a ∈Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k∈N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số
dễ mà
ta thấy n^2 là 1 số chính phương mà 1 số chính phương chia 3 dư 0 ;1
do n là snt >3=>n^2chia 3 dư1
=>n^2=3k+1
=>n^2+2006=3k+1+2006=3k+2007=3(k+669) chia hết cho 3
vậy n^2+2006 là hợp số
- Vì n là số nguyên tố lớn hơn 3 =) n là số lẻ
Mà n^2 = n.n = số lẻ . số lẻ = số lẻ
Mà 2015 cũng là số lẻ
=) n^2+2015=số lẻ + số lẻ = số chẵn chia hết cho 2
Vậy n^2+2015 chia hết cho 1 , 2 và chia hết cho chính nó
=) n^2+2015 nhiều hơn 2 ước =) Là hợp số
Vì n là số nguyên tố lớn hơn 3
=> n không chia hết cho 3
=> n2 chia 3 dư 1
=> n2 = 3k + 1 ( k \(\inℕ^∗\))
=> n2 + 2015 = 3k + 1 + 2015 = 3k + 2016
Mà \(\hept{\begin{cases}3k⋮3\\2016⋮3\end{cases}}\)=> n2 + 2015 là hợp số.
Gọi b là số tự nhiên đó.
Vì b chia cho 7 dư 5,chia cho 13 dư 4
=>b+9 chia hết cho 7
b+9 chia hết cho 13
=>b+9 chia hết cho 7.13=91
=>b chi cho 91 dư 91-9=82
=>điều phải chứng minh
a) Giải:
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
a)Giả sử \(n^2\) + 2006 = m^2 (m,n la số nguyên)
Suy ra n\(^2\) - \(m^2\) =2006 \(\Leftrightarrow\) ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 là một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
b)n là số nguyên tố > 3 nên không chia hết cho 3
Vậy n\(^2\)\(⋮\)3 dư 1
Do đó n\(^2\)+2006=3m+1
+2006=3m+2007=3.(m+669)chia hết cho 3
Vậyn\(^2\)+2006 là hợp số
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số
Lời giải:
Vì $n$ là snt lớn hơn $3$ nên $n$ không chia hết cho $3$. $\Rightarrow n$ chia 3 dư 1 hoặc dư 2.
Nếu $n$ chia $3$ dư $1$. Đặt $n=3k+1$ với $k$ tự nhiên.
Ta có:
$n^2+2006=(3k+1)^2+2006=9k^2+6k+2007=3(3k^2+2k+669)\vdots 3$. Mà $n^2+2006>3$ nên $n^2+2006$ là hợp số.
Nếu $n$ chia $3$ dư $2$. Đặt $n=3k+2$ với $k$ tự nhiên.
Ta có:
$n^2+2006=(3k+2)^2+2006=9k^2+12k+2010=3(3k^2+2k+670)\vdots 3$. Mà $n^2+2006>3$ nên $n^2+2006$ là hợp số.
Tóm lại $n^2+2006$ là hợp số.