Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Bài 3:
\(\frac{3n+1}{5n+2}\)
Ta có : (3n +1) * 5 =15n + 5
(5n+2) *3 = 15n + 6
Mà : 15n + 6 - (15n + 5 ) =1
=>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)
đpcm
Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)
làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có
\(\frac{1}{k^3}\)< \(\frac{1}{k^3-k}\)= \(\frac{1}{k\left(k^2-1\right)}\)= \(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)
do đó
A < \(\frac{1}{2^3-2}\)+ \(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)= \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
đặt C = \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng
\(\frac{1}{\left(n-1\right)n}\)- \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)- \(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{4}\)- \(\frac{1}{2n\left(n+1\right)}\)< \(\frac{1}{4}\)
vậy ta có điều phải chứng minh
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)
\(\Rightarrowđpcm\)
Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)
=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> \(A< 2-\frac{1}{n}\) (ĐPCM)