Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
đáp án nè:
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm)
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm
Để A nguyên
=>n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>n+7-n+2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2E{-1;-5;1;5}
=>nE{-3;-7;-1;3}
Thử lại nx là đc
n+7/n+2 là số nguyên khi n+7chia hết cho n+2
ta có: n+7chia hết cho n+2
suy ra (n+2)+5 chia hết cho n+2
suy ra 5 chia hết cho n+2
N+2 thuộc ước của 5
còn sau đó bạn biết làm gì rồi đó
\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)
\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)
\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)
MC:1.2.3....(p-1)
Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)
Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)
Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p
\(\Rightarrow\)m chia hết cho p (đpcm)
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
Để A nguyên thì :
\(n+7⋮n-2\)
\(n-2+9⋮n-2\)
mà \(n-2⋮n-2\Rightarrow9⋮n-2\Rightarrow n-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng :
n-2 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 3 | 1 | 5 | -1 | 11 | -7 |
Vậy,.........
\(\frac{1}{n-1},\frac{2}{n-2},....,\frac{n-1}{1}\)
\(\frac{1}{n-1}=\frac{n-1+n-1+3}{n-1}=2+\frac{3}{n-1}\)
\(\frac{2}{n-2}=\frac{n-2+n-2+6}{n-2}=2+\frac{6}{n-2}\)
\(......\)
\(\frac{n-1}{1}=n-1\)
\(=>DPCM\)
mk 6 lên 7 ko chắc nha