\(\left(n-2\right)^2+11\)không chia hết cho 121

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

giả sử (n-2)^2+11 chia hết 121

=>(n-2)^2 chia hết 110

mà 110 ko là scp => n-2 ko là stn

mà n là stn =>vô lý

18 tháng 2 2018

Đồng dư thôi

23 tháng 1 2018

là 10 nhé

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)

\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)

\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)

\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)

\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3

=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)

=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

30 tháng 7 2016

\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)

=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)

23 tháng 8 2019

Ta có : \(x^n-1⋮x-1\)

          \(x^{n+1}-1⋮x-1\)

=> \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)(1)

Do n; n+1 là 2 số tự nhiên liên tiếp => 1 trong 2 số chia hết cho 2 

+)Th1: n chia hết cho 2 hay n chẵn => \(x^n-1⋮x^2-1\) hay \(⋮x+1\)(2)

+)Th2: n+1 chia hết cho 2 hay n+2 chẵn.CM như trên 

Mà \(x+1\)\(\left(x-1\right)^2\) ko có nhân tử chung. Từ (1),(2) suy ra \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)\(\left(x+1\right)\)(đpcm)

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24