Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4!>4.3\) ; \(5!>5.4\) ;....; \(n!>n\left(n-1\right)\)
\(\Rightarrow VT=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)
\(VT< 1+\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(VT< 2-\frac{1}{n}< 2\) (đpcm)
a) Dễ thấy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
3k > 3k + 1
Nhân hai vế của (1) vơi 3, ta được:
3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.
Vì 6k - 1 > 0 nên
3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.
tức là bất đẳng thức đúng với n = k + 1.
Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.
b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
2k + 1 > 2k + 3 (2)
Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh
2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5
Nhân hai vế của bất đẳng thức (2) với 2, ta được:
2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.
Vì 2k + 1> 0 nên 2k + 2 > 2k + 5
Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)