K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Do n không chia hết cho 3 => n chia 3 dư 1 hoặc 2

+ Nếu n chia 3 dư 1 thì n = 3.k + 1 => n2 = (3.k + 1).(3.k + 1)

                                                             = (3.k + 1).3.k + (3.k + 1)

                                                             = 9.k2 + 3.k + 3.k + 1 chia 3 dư 1

+ Nếu n chia 3 dư 2 thì n = 3k + 2 => n2 = (3.k + 2).(3.k + 2)

                                                            = (3.k + 2).3.k + (3.k + 2).2

                                                           = 9.k2 + 6.k + 6.k + 4 chia 3 dư 1

=> n2 luôn chia 3 dư 1 với n không chia hết cho 3 (đpcm)

3 tháng 8 2016

n không chia hết cho 3 => n có dạng 3k + 1, 3k + 2.

*) n có dạng 3k + 1 => n2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 chia 3 dư 1

*) n có dạng 3k + 2 => n2 = (3k + 2)(3k + 2) = 9k2 + 12k + 4 chia 3 dư 1

24 tháng 12 2016
n=4 nha k mk di
24 tháng 12 2016

giải rõ nha bạn

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

19 tháng 2 2016

Mấy bạn giúp mình đi mình đang cần gấp lắm

19 tháng 2 2016

Sorrry nha em moi co lop 5

Duyet nha

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

8 tháng 10 2022

n:2:2n= nhiêu 

19 tháng 12 2016

n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3