Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(Q< 1\)
a) ĐK: \(x\ge0;x\ne1\)
Ta có: \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(x+\sqrt{x}-2=\left(x-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
=> \(P=\frac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{4\sqrt{x}}{\sqrt{x}+1}\)
b) \(P=\sqrt{x}-1\)
<=> \(\frac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)
<=> \(x-4\sqrt{x}-1=0\)
<=> \(\orbr{\begin{cases}\sqrt{x}=2+\sqrt{5}\\\sqrt{x}=2-\sqrt{5}< 0\left(loại\right)\end{cases}}\)
<=> \(x=9+4\sqrt{5}\)thỏa mãn